f′=4x3−16xf'=4x^3-16xf′=4x3−16x
f′′=12x2−16f''=12x^2-16f′′=12x2−16
12x2−16>0 ⟺ 3x2−4>0 ⟹ x∈(−∞,−233)⋃(233,+∞)12x^2-16>0\iff 3x^2-4>0\implies x\in (-\infty,-\frac{2\sqrt3 }{3})\bigcup(\frac{2\sqrt3 }{3},+\infty)12x2−16>0⟺3x2−4>0⟹x∈(−∞,−323)⋃(323,+∞), then the function is concave upward.
f′′<0 ⟺ x∈(−233,233)f''<0\iff x\in (-\frac{2\sqrt3}{3},\frac{2\sqrt3}{3})f′′<0⟺x∈(−323,323) , then the function is concave downward.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments