We find the partial derivatives of f(x,y)=excos(y)
The partial derivatives of with respect to 'x' are fx=excos(y)
fxx=excos(y)
fxxx=excos(y)......
∴f(π,0)=fx(π,0)=fxx(π,0)....=eπcos(0)=eπ
The partial derivatives of f(x,y)
with respect to y are fy=ex(−sin(y))
fyy=ex(−cos(y))
fyyy=ex(sin(y))....
fy(π,0)=0=fyyy(π,0)=fyyyyy(π,0)....
And fyy=−1
fyyyy=1 ....
The partial derivatives of ∂x∂y∂2f=0
Substituting these values in Taylor's
series we get
f(x,y)=eπ+(x−π)eπ(1)+(x−π)2eπ+0+y2(−eπ)+....
Comments