Question #104500
Trace the curve y^3 = x^2 −1 , and state all the properties you use to trace it.
1
Expert's answer
2020-03-04T17:42:02-0500

y3=x21y^3=x^2-1 ,y=x213y=\sqrt[3]{x^2-1}

1 thej domain x(;+)x\in(-\infty;+\infty)

2 intersection points with coordinate axes

Ox:y=0x21=0x1=1,x2=1A(1;0),B(1;0)Oy:x=0y3=1y=1C(0;1)Ox: y=0\\ x^2-1=0\\ x_1=1, x_2=-1\\ A(1;0), B(-1;0)\\ Oy:x=0\\ y^3=-1\\ y=-1\\ C(0;-1)

3 symmetry

y3=(x)21=x21y^3=(-x)^2-1=x^2-1

the graph is symmetric about the axis OyOy

4 the function is continuous

5 we find the critical points

y=13(x21)232xx=0,x=1,x=1x(,1)(1,0),y<0,yx(0,1)(1,),y>0,yy'=\frac{1}{3}(x^2-1)^{-\frac{2}{3}}\cdot2x\\ x=0, x=1,x=-1\\ x\in(-\infty,-1)\cup(-1,0), y'<0, y\searrow\\ x\in(0,1)\cup(1,\infty), y'>0,y\nearrow\\

Then x=0x=0 is the maximum point

y=1,x=0y=-1,x=0

6 find the inflection points

y=23(x21)23+23x(23)(x21)53==23(x21)53(x2143x2)==23(x21)53(13x21)x(,1)(1,+),y<0x(1,1),y>0y''=\frac{2}{3}(x^2-1)^{-\frac{2}{3}}+\frac{2}{3}x\cdot(-\frac{2}{3})(x^2-1)^{-\frac{5}{3}}=\\ =\frac{2}{3}(x^2-1)^{-\frac{5}{3}}(x^2-1-\frac{4}{3}x^2)=\\ =\frac{2}{3}(x^2-1)^{-\frac{5}{3}}(-\frac{1}{3}x^2-1)\\ x\in(-\infty,-1)\cup(1,+\infty), y''<0\\ x\in (-1,1), y''>0

7 there are no vertical asymptotes

 horizontal asymptote

y=kx+bk=limxx213x=0b=limx(x2130x)=y=kx+b\\ k=\lim_{x\to\infty} \frac{\sqrt[3]{x^2-1}}{x}=0\\ b=\lim_{x\to\infty} (\sqrt[3]{x^2-1}-0\cdot x)=\infty

there are no horizontaltical asymptotes

8 intervals for the range

y>0,x21>0x2>1x(;1)(1;)y<0,x(1;1)y>0, x^2-1>0\\ x^2>1\\ x\in(-\infty;-1)\cap (1;\infty)\\ y<0, x\in(-1;1)

9 behavior at infinity

x,y+x+,y+x\to-\infty, y\to+\infty\\ x\to+\infty, y\to+\infty






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS