y3=x2−1 ,y=3x2−1
1 thej domain x∈(−∞;+∞)
2 intersection points with coordinate axes
Ox:y=0x2−1=0x1=1,x2=−1A(1;0),B(−1;0)Oy:x=0y3=−1y=−1C(0;−1)
3 symmetry
y3=(−x)2−1=x2−1
the graph is symmetric about the axis Oy
4 the function is continuous
5 we find the critical points
y′=31(x2−1)−32⋅2xx=0,x=1,x=−1x∈(−∞,−1)∪(−1,0),y′<0,y↘x∈(0,1)∪(1,∞),y′>0,y↗
Then x=0 is the maximum point
y=−1,x=0
6 find the inflection points
y′′=32(x2−1)−32+32x⋅(−32)(x2−1)−35==32(x2−1)−35(x2−1−34x2)==32(x2−1)−35(−31x2−1)x∈(−∞,−1)∪(1,+∞),y′′<0x∈(−1,1),y′′>0
7 there are no vertical asymptotes
horizontal asymptote
y=kx+bk=limx→∞x3x2−1=0b=limx→∞(3x2−1−0⋅x)=∞
there are no horizontaltical asymptotes
8 intervals for the range
y>0,x2−1>0x2>1x∈(−∞;−1)∩(1;∞)y<0,x∈(−1;1)
9 behavior at infinity
x→−∞,y→+∞x→+∞,y→+∞
Comments