"y^3=x^2-1" ,"y=\\sqrt[3]{x^2-1}"
1 thej domain "x\\in(-\\infty;+\\infty)"
2 intersection points with coordinate axes
"Ox: y=0\\\\\nx^2-1=0\\\\\nx_1=1, x_2=-1\\\\\nA(1;0), B(-1;0)\\\\\nOy:x=0\\\\\ny^3=-1\\\\\ny=-1\\\\\nC(0;-1)"
3 symmetry
"y^3=(-x)^2-1=x^2-1"
the graph is symmetric about the axis "Oy"
4 the function is continuous
5 we find the critical points
"y'=\\frac{1}{3}(x^2-1)^{-\\frac{2}{3}}\\cdot2x\\\\\nx=0, x=1,x=-1\\\\\nx\\in(-\\infty,-1)\\cup(-1,0), y'<0, y\\searrow\\\\\nx\\in(0,1)\\cup(1,\\infty), y'>0,y\\nearrow\\\\"
Then "x=0" is the maximum point
"y=-1,x=0"
6 find the inflection points
"y''=\\frac{2}{3}(x^2-1)^{-\\frac{2}{3}}+\\frac{2}{3}x\\cdot(-\\frac{2}{3})(x^2-1)^{-\\frac{5}{3}}=\\\\\n=\\frac{2}{3}(x^2-1)^{-\\frac{5}{3}}(x^2-1-\\frac{4}{3}x^2)=\\\\\n=\\frac{2}{3}(x^2-1)^{-\\frac{5}{3}}(-\\frac{1}{3}x^2-1)\\\\\nx\\in(-\\infty,-1)\\cup(1,+\\infty), y''<0\\\\\nx\\in (-1,1), y''>0"
7 there are no vertical asymptotes
horizontal asymptote
"y=kx+b\\\\\nk=\\lim_{x\\to\\infty} \\frac{\\sqrt[3]{x^2-1}}{x}=0\\\\\nb=\\lim_{x\\to\\infty} (\\sqrt[3]{x^2-1}-0\\cdot x)=\\infty"
there are no horizontaltical asymptotes
8 intervals for the range
"y>0, x^2-1>0\\\\\nx^2>1\\\\\nx\\in(-\\infty;-1)\\cap (1;\\infty)\\\\\ny<0, x\\in(-1;1)"
9 behavior at infinity
"x\\to-\\infty, y\\to+\\infty\\\\\nx\\to+\\infty, y\\to+\\infty"
Comments
Leave a comment