Answer to Question #104421 in Calculus for Ajay

Question #104421
Use Green’s theorem, and apply it to evaluate ∫(3x^2–4y)dx–(2x+y^3)dy where C is the ellipse 4x^2+9y^2=25
1
Expert's answer
2020-03-02T16:58:59-0500

ANSWER: 25π3\frac{25π}{3}

EXPLANATION:

By the Green's theorem (3x24y)dx(2x+y3)dy\quad \oint { (3{ x }^{ 2 }-4y)dx-(2x+{ y }^{ 3 } } )dy = =A[(2xy3)x(3x24y)y]dxdy==\quad \underset { \quad }{ \underset { A }{ \iint } \left[ \frac { \partial \left( -2x-{ y }^{ 3 } \right) \quad \quad }{ \partial x } -\frac { \partial \left( 3{ x }^{ 2 }-4y \right) \quad \quad }{ \partial y } \quad \right] dxdy } \quad= =A[2+4]dxdy,=\quad \underset { \quad }{ \underset { A }{ \iint } \left[ -2+4\quad \quad \right] dxdy } ,\quad \quad where A is the region bounded by ellipse 4x2+9y2=25{ 4x }^{ 2\quad }+9{ y }^{ 2 }=25 . The semi-axes of the ellipse are 52\frac { 5 }{ 2 } and 53\frac{5}{3} . The area of the ellipse is 25π6\frac{25π}{6} . Therefore A[2+4]dxdy=2(25π6)=25π3\quad \underset { \quad }{ \underset { A }{ \iint } \left[ -2+4\quad \quad \right] dxdy } =2\left(\frac{25π}{6}\right)=\frac{25π}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment