ANSWER: "\\frac{25\u03c0}{3}"
EXPLANATION:
By the Green's theorem "\\quad \\oint { (3{ x }^{ 2 }-4y)dx-(2x+{ y }^{ 3 } } )dy" = "=\\quad \\underset { \\quad }{ \\underset { A }{ \\iint } \\left[ \\frac { \\partial \\left( -2x-{ y }^{ 3 } \\right) \\quad \\quad }{ \\partial x } -\\frac { \\partial \\left( 3{ x }^{ 2 }-4y \\right) \\quad \\quad }{ \\partial y } \\quad \\right] dxdy } \\quad=" "=\\quad \\underset { \\quad }{ \\underset { A }{ \\iint } \\left[ -2+4\\quad \\quad \\right] dxdy } ,\\quad \\quad" where A is the region bounded by ellipse "{ 4x }^{ 2\\quad }+9{ y }^{ 2 }=25" . The semi-axes of the ellipse are "\\frac { 5 }{ 2 }" and "\\frac{5}{3}" . The area of the ellipse is "\\frac{25\u03c0}{6}" . Therefore "\\quad \\underset { \\quad }{ \\underset { A }{ \\iint } \\left[ -2+4\\quad \\quad \\right] dxdy } =2\\left(\\frac{25\u03c0}{6}\\right)=\\frac{25\u03c0}{3}"
Comments
Leave a comment