"\\iiint{\\cos(x^2+y^2+z^2)^{3\/2} dxdydz}"
Convert "x,y,z" to spherical coordinates "r, \\varphi, \\theta."
"x=r\\cos(\\varphi)\\sin(\\theta) \\\\\ny=r\\sin(\\varphi)\\sin(\\theta) \\\\\nz=r\\cos(\\theta)"
The absolute value of Jacobian is "r^2\\sin(\\theta)." Then the original integral is
"\\iiint {\\cos((r^2)^{3\/2})\\cdot r\\sin(\\theta)dr d\\varphi d\\theta} = \\iiint{r^2\\cos(r^3)\\sin(\\theta)dr d\\varphi d\\theta } \\\\\n\n= \\int{r^2\\cos(r^3)dr}\\int{d\\varphi}\\int{\\sin(\\theta)d\\theta} = \\frac{1}{3}\\int{\\cos(r^3)d(r^3)}\\int{d\\varphi}\\int{\\sin(\\theta)d\\theta} \\\\\n\n= -\\frac{1}{3}\\varphi\\sin(r^3)\\cos{(\\theta)}"We have omitted the constants for convenience.
Return to "x,y,z."
"r=\\sqrt{x^2+y^2+z^2} \\\\\n\\varphi = \\arctan{\\left( \\frac{y}{x}\\right)} \\\\\n\\theta = \\arccos{\\left(\\frac{z}{\\sqrt{x^2+y^2+z^2}}\\right)}"
Therefore, the original integral is
"\\iiint{\\cos(x^2+y^2+z^2)^{3\/2} dxdydz} \\\\\n= -\\frac{1}{3} \\arctan{\\left( \\frac{y}{x}\\right)}\\sin((x^2+y^2+z^2)^{3\/2})\\cos{\\left[ \\arccos{\\left(\\frac{z}{\\sqrt{x^2+y^2+z^2}}\\right)} \\right]} \\\\\n\n= -\\frac{1}{3} \\arctan{\\left( \\frac{y}{x}\\right)}\\sin((x^2+y^2+z^2)^{3\/2})\\frac{z}{\\sqrt{x^2+y^2+z^2}}"
Comments
Leave a comment