"v(t)=A(1-e^{-t\/t_{max}})"
"v(0)=0, \\ \\ v(2.6)=28\\ m\/s"
"t_{max}=7\\ s"
Find "a(t), a (0)" and "a(t),t\\rightarrow \\infin"
Solution:
"v(2.6)=A(1-e^{-2.6\/7})=28 \\ m\/s \\ \\Rightarrow A=\\frac{28}{1-e^{-2.6\/7}}=90.25"
"v(t)=90.25(1-e^{-t\/7})"
"a(t)=\\frac{dv}{dt}=-90.25e^{-t\/7}\\times \\frac{-1}{7}=12.9 e^{-t\/7}"
"a(0)=12.9 \\ m\/s^2"
"\\lim\\limits_{t\\rightarrow \\infin} a(t)= \\lim\\limits_{t\\rightarrow \\infin} 12.9e^{-t\/7}=0\\Rightarrow y=0" is an horizontal asymptote.
Answer: "a(t)=12.9e^{-t\/7}, \\ a(0)=12.9 \\ m\/s^2, \\ y=0."
Information that "x(10.46)=400\\ m" (where "x(t)" is position of the car as a function of time), can be used to find formula for "x(t)" :
"\\frac{dx}{dt}=v, \\ \\ x=\\int v \\ dt= \\int (90.25-90.25e^{-t\/7})dt= c+90.25t+7\\times 90.25e^{-t\/7}"
"x(10.46)=400=c+90.25\\times 10.46+7\\times 90.25e^{-10.46\/7} \\Rightarrow c=-685.8"
"x(t)=-685.8+ 90.25t+631.75e^{-t\/7}"
Comments
Leave a comment