Solution. We write the profit function P(x)=R(x)-C(x).
P ( x ) = 45 x − ( 0.7 x 3 − 0.8 x 2 + 12 x + 9 ) = − 0.7 x 3 + 0.8 x 2 + 33 x − 9 P(x)=45x-(0.7x^3-0.8x^2+12x+9)=-0.7x^3+0.8x^2+33x-9 P ( x ) = 45 x − ( 0.7 x 3 − 0.8 x 2 + 12 x + 9 ) = − 0.7 x 3 + 0.8 x 2 + 33 x − 9 Find the value of x for which the function P(x) takes the maximum value. Find the derivative P (x)
P ′ ( x ) = − 2.1 x 2 + 1.6 x + 33 P'(x)=-2.1x^2+1.6x+33 P ′ ( x ) = − 2.1 x 2 + 1.6 x + 33 Find the points at which the derivative is zero.
− 2.1 x 2 + 1.6 x + 33 = 0 -2.1x^2+1.6x+33=0 − 2.1 x 2 + 1.6 x + 33 = 0
D = 1. 6 2 − 4 ( − 2.1 ) × 33 = 279.76 D=1.6^2-4(-2.1)\times33=279.76 D = 1. 6 2 − 4 ( − 2.1 ) × 33 = 279.76 Roots of the equation
x 1 = − 1.6 − 279.76 − 2 × 2.1 ≈ 4.36 x_1=\frac {-1.6-\sqrt{279.76}}{-2\times2.1}\approx 4.36 x 1 = − 2 × 2.1 − 1.6 − 279.76 ≈ 4.36
x 2 = − 1.6 + 279.76 − 2 × 2.1 ≈ − 3.6 < 0 x_2=\frac {-1.6+\sqrt{279.76}}{-2\times2.1}\approx -3.6<0 x 2 = − 2 × 2.1 − 1.6 + 279.76 ≈ − 3.6 < 0 Find the value of the derivative in each interval (considering that x>0)
0<x<x2 P'(x)>0 function P (x) increases. x>x2 P'(x)>0 function P (x) decreases. As result maximum profit for the cost function P(x)=92=P(4.36).
Answer. 92.
Comments