x²/a²+y²/b²+z²/c²=1 ----------(1)
This is an ellipsoid that is symmetrical about the origin.
Thus, the box of maximum volume will also be symmetrical about the origin and it's vertices will lie on the ellipsoid's surface.
Let one of the vertices be (x,y,z), where x,y, z>0.
Thus, the box has the dimensions 2x, 2y and 2z.
⟹Vb=(2x)(2y)(2z)=8xyz=max .
From (1), z=c(1−x²/a²−y²/b²)1/2
⟹Vb=8cxy(1−x²/a²−y²/b²)1/2
δVb/δx=8cy(1−x²/a²−y²/b²)1/2+8cxy(−x/a2)(1−x²/a²−y²/b²)−1/2
=(1−x²/a²−y²/b²−x²/a²)8cy(1−x²/a²−y²/b²)−1/2
=(1−2x²/a²−y²/b²)8cy(1−x²/a²−y²/b²)−1/2
δVb/δy=8cx(1−x²/a²−y²/b²)1/2+8cxy(−y/b2)(1−x²/a²−y²/b²)−1/2
=(1−x²/a²−y²/b²−y²/b²)8cx(1−x²/a²−y²/b²)−1/2
=(1−x²/a²−2y²/b²)8cx(1−x²/a²−y²/b²)−1/2
Now, for maximum volume, δVb/δx=0;δVb/δy=0 ;thus we get;
1−2x²/a²−y²/b²⟹2x²/a²+y²/b²=1
1−x²/a²−2y²/b²⟹x²/a²+2y²/b²=1
Solving these two equations we get;
3x2/a2=1⟹x=a/3
⟹y=b/3
⟹z= c(1−x²/a²−y²/b²)1/2=c/3
⟹Vb(max)=8abc/33 .
Comments
Leave a comment