Let's denote the expression x−2y=ζ(x,y) and 3x+y=ξ(x,y). Then rewrite task as
(1) Z(x,y)=f(ζ(x,y))+g(ξ(x,y))
The first derivatives by the rule of differentiation of nested functions will be
(2) Zx′=fζ′⋅ζx′+gξ′⋅ξx′=fζ′+3gξ′
(3) Zy′=fζ′⋅ζy′+gξ′⋅ξy′=−2fζ′+gξ′
The second derivatives are
(4) Zxx′′=fζζ′′⋅ζx′+3gξξ′′⋅ξx′=fζζ′′+9gξξ′′
(5) Zxy′′=fζζ′′⋅ζy′+3gξξ′′⋅ξy′=−2fζζ′′+3gξξ′′
(6) Zyy′′=−2fζζ′′⋅ζy′+gξξ′′⋅ξy′=4fζζ′′+gξξ′′
Let's substitute these expressions into the equation of the problem and give similar terms.
(7) Zxx′′+AZxy′′+BZyy′′=0fζζ′′+9gξξ′′+A⋅(−2fζζ′′+3gξξ′′)+B⋅(4fζζ′′+gξξ′′)=0
(8) fζζ′′⋅(1−2A+4B)+gξξ′′⋅(9+3A+B)=0
Equation (8) can be performed for any f and g only if the expressions in parentheses are both 0. We get a system of two algebraic equations with two unknowns.
(9) {1−2A+4B=09+3A+B=0
In standard form they are
(10) {2A−4B=13A+B=−9
The solution to this system is easy to find A=−1435;B=−1421 or A=−25;B=−23
Answer: A=−25;B=−23
Comments