Question #104407
Given Z=f(x-2y)+g(3x+y) such that Zxx + AZxy+BZyy=0 Find A and B
1
Expert's answer
2020-03-03T09:19:07-0500

Let's denote the expression x2y=ζ(x,y)x-2y=\zeta (x,y) and 3x+y=ξ(x,y)3x+y=\xi(x,y). Then rewrite task as

(1) Z(x,y)=f(ζ(x,y))+g(ξ(x,y))Z(x,y)=f(\zeta(x,y))+g(\xi(x,y))

The first derivatives by the rule of differentiation of nested functions will be

(2) Zx=fζζx+gξξx=fζ+3gξZ'_x=f'_{\zeta}\cdot \zeta'_x+g'_{\xi}\cdot \xi'_x=f'_{\zeta}+3g'_{\xi}

(3) Zy=fζζy+gξξy=2fζ+gξZ'_y=f'_{\zeta}\cdot \zeta'_y+g'_{\xi}\cdot \xi'_y=-2f'_{\zeta}+g'_{\xi}

The second derivatives are

(4) Zxx=fζζζx+3gξξξx=fζζ+9gξξZ''_{xx}=f''_{\zeta\zeta}\cdot \zeta'_x+3g''_{\xi\xi}\cdot \xi'_x=f''_{\zeta\zeta}+9g''_{\xi\xi}

(5) Zxy=fζζζy+3gξξξy=2fζζ+3gξξZ''_{xy}=f''_{\zeta\zeta}\cdot \zeta'_y+3g''_{\xi\xi}\cdot \xi'_y=-2f''_{\zeta\zeta}+3g''_{\xi\xi}

(6) Zyy=2fζζζy+gξξξy=4fζζ+gξξZ''_{yy}=-2f''_{\zeta\zeta}\cdot \zeta'_y+g''_{\xi\xi}\cdot \xi'_y=4f''_{\zeta\zeta}+g''_{\xi\xi}

Let's substitute these expressions into the equation of the problem and give similar terms.

(7) Zxx+AZxy+BZyy=0fζζ+9gξξ+A(2fζζ+3gξξ)+B(4fζζ+gξξ)=0Z''_{xx}+AZ''_{xy}+BZ''_{yy}=0\\f''_{\zeta\zeta}+9g''_{\xi\xi}+A\cdot (-2f''_{\zeta\zeta}+3g''_{\xi\xi})+B\cdot(4f''_{\zeta\zeta}+g''_{\xi\xi})=0

(8) fζζ(12A+4B)+gξξ(9+3A+B)=0f''_{\zeta\zeta}\cdot (1-2A+4B)+g''_{\xi\xi}\cdot(9+3A+B)=0

Equation (8) can be performed for any ff and gg only if the expressions in parentheses are both 0. We get a system of two algebraic equations with two unknowns.

(9) {12A+4B=09+3A+B=0\begin{cases} 1-2A+4B=0 \\ 9+3A+B=0 \end{cases}

In standard form they are

(10) {2A4B=13A+B=9\begin{cases} 2A-4B=1 \\ 3A+B=-9 \end{cases}

The solution to this system is easy to find A=3514;B=2114A=-\frac{35}{14}; B=-\frac{21}{14} or A=52;B=32A=-\frac{5}{2}; B=-\frac{3}{2}

Answer: A=52;B=32A=-\frac{5}{2}; B=-\frac{3}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS