Answer to Question #104434 in Calculus for Emmanuel

Question #104434
How to solve a multivariable function using Lagrange multipliers
1
Expert's answer
2020-03-09T12:00:40-0400

When you want to maximize (or minimize) a multivariable function f(x,y,)f(x, y, \dots)  subject to the constraint that another multivariable function equals a constant, g(x,y,)=c{g(x, y, \dots) = c}

follow these steps:

Step 1: Introduce a new variable λ{\lambda}, and define a new function L\mathcal{L}  as follows:

L(x,y,,λ)=f(x,y,)λ(g(x,y,)c)\mathcal{L}(x, y, \dots, {\lambda}) = {f(x, y, \dots)} - {\lambda} ({g(x, y, \dots)-c})


This function L\mathcal{L}  is called the "Lagrangian", and the new variable λ{\lambda}  is referred to as a "Lagrange multiplier"

Step 2: Set the gradient of L\mathcal{L}  equal to the zero vector.

L(x,y,,λ)=0Zero vector\nabla \mathcal{L}(x, y, \dots, {\lambda}) = \textbf{0} \quad \leftarrow \small{\gray{\text{Zero vector}}}

In other words, find the critical points of L\mathcal{L}

Step 3: Consider each solution, which will look something like (x0,y0,,λ0)(x_0, y_0, \dots, {\lambda}_0). Plug each one into f. Or rather, first remove the λ0{\lambda}_0 then plug it into f, since f does not have λ{\lambda}  as an input. Whichever one gives the greatest (or smallest) value is the maximum (or minimum) point your are seeking.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment