"y=f(x)=\\sqrt[3]{x} - 1"
1) Domain
Domain is all real numbers.
2) Symmetry
"f(-x) = \\sqrt[3]{-x}-1 = -\\sqrt[3]{x}-1 \\neq -f(x) \\text{ or } f(x)"
The function is neither even nor odd.
3) Intercepts on the axes
x-intercept:
"y=0 \\\\\n\\sqrt[3]{x} - 1 =0\\\\\nx=1"
y-intercept:
"x=0\\\\\ny=\\sqrt[3]{0}-1=-1"
4) Asymptotes
Let "y=kx+b" is asymptote.
"k=\\lim\\limits_{x\\to\\infty}{\\frac{f(x)}{x}}=\\lim\\limits_{x\\to\\infty}{\\frac{\\sqrt[3]{x}-1}{x}}=0"
"b=\\lim\\limits_{x\\to\\infty}{(f(x)-kx)}=\\lim\\limits_{x\\to\\infty}{\\sqrt[3]{x}-1}=\\infty"
No asymptotes.
5) Monotonicity
"y'=\\frac{1}{3\\sqrt[3]{x^2}}"
The first derivative does not exist when "x=0." If "x>0," then "y'>0." If "x<0," then "y'>0." Therefore, "y=f(x)" is monotonically increasing and "x=0" is the critical point.
6) Convexity
"y'' = -\\frac{2}{9x\\sqrt[3]{x^2}}"
The second derivative does not exist when "x=0." If "x>0," then "y''<0." If "x<0," then "y''>0." Therefore, when "x<0" the function is convex and when "x>0" the function is concave.
Comments
Leave a comment