Trace the curve y =³√ x −1 , and state all the properties you use to trace it.
1
Expert's answer
2020-03-04T17:35:52-0500
y=f(x)=3x−1
1) Domain
Domain is all real numbers.
2) Symmetry
f(−x)=3−x−1=−3x−1=−f(x) or f(x)
The function is neither even nor odd.
3) Intercepts on the axes
x-intercept:
y=03x−1=0x=1
y-intercept:
x=0y=30−1=−1
4) Asymptotes
Let y=kx+b is asymptote.
k=x→∞limxf(x)=x→∞limx3x−1=0
b=x→∞lim(f(x)−kx)=x→∞lim3x−1=∞
No asymptotes.
5) Monotonicity
y′=33x21
The first derivative does not exist when x=0. If x>0, then y′>0. If x<0, then y′>0. Therefore, y=f(x) is monotonically increasing and x=0 is the critical point.
6) Convexity
y′′=−9x3x22
The second derivative does not exist when x=0. If x>0, then y′′<0. If x<0, then y′′>0. Therefore, when x<0 the function is convex and when x>0 the function is concave.
Comments