∬1dxdy=F(x,y)\iint1dxdy=F(x,y)∬1dxdy=F(x,y) ,where F(x,y)=y(x+c1)+c2F(x,y)=y(x+c_1)+c_2F(x,y)=y(x+c1)+c2 , where c1=const,c2=constc_1=const,c_2=constc1=const,c2=const , because d2F(x,y)dxdy=1\frac{d^2F(x,y)}{dxdy}=1dxdyd2F(x,y)=1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments