"(a)(i)\n\\\\f(x,y)=cos(x^2+y^2)\n\\\\f'(x,y)_x= -2xsin(x^2+y^2)\\\\f''(x,y)_{xx}=-2sin(x^2+y^2)-2x.2xcos(x^2+y^2)=-2sin(x^2+y^2)-4x^2cos(x^2+y^2)\\\\f'(x,y)_y=-2ysin(x^2+y^2)\n\\\\f''(x,y)_{yy}=-2sin(x^2+y^2)-2y.2ycos(x^2+y^2)=-2sin(x^2+y^2)-4y^2cos(x^2+y^2)"
"(ii) \\ f(x,y)=sin(x\/y)\\\\f'(x,y)_x=\\dfrac{cos(x\/y)}{y}\\\\f''(x,y)_{xx}=-\\dfrac{sin(x\/y)}{y^2}\n\\\\\nf'(x,y)_y=-\\frac{x\\cos \\left(\\frac{x}{y}\\right)}{y^2}\n\\\\f''(x,y)_{yy}=\\mathrm{\\:}x\\frac{\\frac{x\\sin \\left(\\frac{x}{y}\\right)}{y^2}y^2-2y\\cos \\left(\\frac{x}{y}\\right)}{\\left(y^2\\right)^2}=\\frac{x\\left(x\\sin \\left(\\frac{x}{y}\\right)-2y\\cos \\left(\\frac{x}{y}\\right)\\right)}{y^4}"
"(b) f(x,y) =10\u2013x^2\u2013y^2\\ \\& \\ \\ \\ \\ ; x^2+y^2 \u22649\\\\ \nf(x,y)=10-(x^2+y^2)\n\\\\maximum \\ value\\ of x^2+y^2 \\ is\\ 9\\ and \\ minimum\\ value\\ is \\ 0"
"f(x,y) \\ ranges \\ between \\ 1 \\ to\\ 10"
"(c)f(x,y)=|x-1|\\ at\\ (0,1)\\\\"
From the graph we can see that there is sharp turn at x=1 which means the function is not differentiable at x=1
(ii) "y^{3}+y\\sin2x+e^{x+y}=0"
In the above function no subpart of the function which is not differentiable at any point
sin , exponential and y3 all are continuous and differentiable at all domain
Hence the above function is differentiable
d) w = xy + x , x = cos t , y = sint
substituting x and y in w
w=cos t*sin t + cos t
w=(sin 2t)/2 + cos t
dw/dt= cos 2t - sin t
putting t=0
dw/dt= 1
Comments
Leave a comment