S:(y=x,y=2x,x=2)S: ( y=x, y = 2x, x = 2 )S:(y=x,y=2x,x=2)
∬x4+y2dS=S∫02∫x2xx4+y2dydx=\iint x^4+y^2 dS = \\ S \\ \int_0^2 \int_x^{2x} x^4 + y^2 dydx =∬x4+y2dS=S∫02∫x2xx4+y2dydx=
∫02[x4y+13y3]x2xdx=\int_0^2 \big[ x^4y + \cfrac13 y^3 \big]_x^{2x} dx =∫02[x4y+31y3]x2xdx=
∫02x4(2x−x)+13(8x3−x3)dx=\int_0^2 x^4(2x-x)+\cfrac13(8x^3-x^3) dx =∫02x4(2x−x)+31(8x3−x3)dx=
∫02x5+73x3dx=[16x6+712x4]02=\int_0^2 x^5+\cfrac73x^3 dx = \big[ \cfrac16x^6 + \cfrac7{12}x^4 \big]_0^2 =∫02x5+37x3dx=[61x6+127x4]02=
16(26−06)+712(24−04)=22(23+7)3=20\cfrac16(2^6 - 0^6) + \cfrac7{12}(2^4 - 0^4) = \cfrac{2^2(2^3 + 7)}3 = 2061(26−06)+127(24−04)=322(23+7)=20
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment