Answer to Question #104509 in Calculus for Aman

Question #104509
Trace the curve y^3 = x^2 −1 , and state all the properties you use to trace it.
1
Expert's answer
2020-03-09T11:27:03-0400

The curve y3=x21y^3=x^2-1 coincides with the graph of the function y(x)=(x21)13\quad \quad y(x)={ \left( { x }^{ 2 }-1 \right) }^{ \frac { 1 }{ 3 } }\quad \quad

1) The function is defined on (,+)\left( -\infty ,+\infty \right) .

2) The function is continuous in the domain of definition, since it is elementary.

3) The function is even , so the graph of the function is symmetric about the axis 0Y.

4) y(x)=23x(x21)23,x(,1)(1,1)(1,+){ y }^{ ' }(x)=\frac { 2 }{ 3 } x{ \left( { x }^{ 2 }-1 \right) }^{ -\frac { 2 }{ 3 } },x\in \left( -\infty ,-1 \right) \cup \left( -1,1 \right) \cup \left( 1,+\infty \right) .

5)By definition , the line x=ax=a is the vertical tanget to the graph of the function at the point (a,y(a))(a,y(a)) if the function is continuous and limxay(x)y(a)xa=\lim _{ x\rightarrow a }{ \frac { y(x)-y(a) }{ x-a } } =\infty

y(1)=0,y(1)=0y(1)=0, y(-1)=0 limx1(x21)130x1=limx1(x+1)13(x1)23=,\lim _{ x\rightarrow 1 }{ \frac { { \left( { x }^{ 2 }-1 \right) }^{ \frac { 1 }{ 3 } }-0 }{ x-1 } =\lim _{ x\rightarrow 1 }{ \frac { { \left( x+1 \right) }^{ \frac { 1 }{ 3 } } }{ { \left( x-1 \right) }^{ \frac { 2 }{ 3 } } } } =\infty } , limx1(x21)130x+1=limx1(x1)13(x+1)23=.\lim _{ x\rightarrow -1 }{ \frac { { \left( { x }^{ 2 }-1 \right) }^{ \frac { 1 }{ 3 } }-0 }{ x+1 } =\lim _{ x\rightarrow -1 }{ \frac { { \left( x-1 \right) }^{ \frac { 1 }{ 3 } } }{ { \left( x+1 \right) }^{ \frac { 2 }{ 3 } } } } =\infty } . Thus, the function y(x)y(x) is not differentiable at the points x=1,x=1x=-1, x=1. The lines x=1,x=1x=-1,x=1 are the vertical tangents to the function graph.

6) The function increases in the intervals  (0,1), (1,+)\ \left( 0,1 \right) ,\ \left( 1,+\infty \right) , since y(x)>0y'(x)>0

The function decreases in the intervals (,1),(1,0)\left( -\infty ,-1 \right) , \left( -1,0 \right), since y(x)<0y'(x)<0

7) From 6) it follows that x=0 is a point of local and global minimum  ymin=y(0)=1\ { y }_{ min }=y(0)=-1 . limx+(x21)13=+\lim _{ x\rightarrow +\infty }{ { \left( { x }^{ 2 }-1 \right) }^{ \frac { 1 }{ 3 } }=+\infty } The range of function is [1,+)\left[- 1,+\infty \right)

8) y"(x)=23[ (x21)2343x2(x21)53]\quad { y }^{ " }(x)=\frac { 2 }{ 3 } { \left[ { \ \left( { x }^{ 2 }-1 \right) }^{ -\frac { 2 }{ 3 } }-\frac { 4 }{ 3 } { x }^{ 2 }{ \left( { x }^{ 2 }-1 \right) }^{ -\frac { 5 }{ 3 } } \right] } =29(x21)53(x2+3)=-\frac { 2 }{ 9 } { \left( { x }^{ 2 }-1 \right) }^{ -\frac { 5 }{ 3 } }\left( { x }^{ 2 }+3 \right)

y"(x)>0y"(x)>0 if x[0,1)x\in [0,1) , y"(x)<0y"(x)<0 if x(1,+)x\in(1,+\infty) . Hence function is convex down in (0,1)(0,1) and convex up in (1,+)(1,+\infty) .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment