The curve "y^3=x^2-1" coincides with the graph of the function "\\quad \\quad y(x)={ \\left( { x }^{ 2 }-1 \\right) }^{ \\frac { 1 }{ 3 } }\\quad \\quad"
1) The function is defined on "\\left( -\\infty ,+\\infty \\right)" .
2) The function is continuous in the domain of definition, since it is elementary.
3) The function is even , so the graph of the function is symmetric about the axis 0Y.
4) "{ y }^{ ' }(x)=\\frac { 2 }{ 3 } x{ \\left( { x }^{ 2 }-1 \\right) }^{ -\\frac { 2 }{ 3 } },x\\in \\left( -\\infty ,-1 \\right) \\cup \\left( -1,1 \\right) \\cup \\left( 1,+\\infty \\right)" .
5)By definition , the line "x=a" is the vertical tanget to the graph of the function at the point "(a,y(a))" if the function is continuous and "\\lim _{ x\\rightarrow a }{ \\frac { y(x)-y(a) }{ x-a } } =\\infty"
"y(1)=0, y(-1)=0" "\\lim _{ x\\rightarrow 1 }{ \\frac { { \\left( { x }^{ 2 }-1 \\right) }^{ \\frac { 1 }{ 3 } }-0 }{ x-1 } =\\lim _{ x\\rightarrow 1 }{ \\frac { { \\left( x+1 \\right) }^{ \\frac { 1 }{ 3 } } }{ { \\left( x-1 \\right) }^{ \\frac { 2 }{ 3 } } } } =\\infty } ," "\\lim _{ x\\rightarrow -1 }{ \\frac { { \\left( { x }^{ 2 }-1 \\right) }^{ \\frac { 1 }{ 3 } }-0 }{ x+1 } =\\lim _{ x\\rightarrow -1 }{ \\frac { { \\left( x-1 \\right) }^{ \\frac { 1 }{ 3 } } }{ { \\left( x+1 \\right) }^{ \\frac { 2 }{ 3 } } } } =\\infty } ." Thus, the function "y(x)" is not differentiable at the points "x=-1, x=1". The lines "x=-1,x=1" are the vertical tangents to the function graph.
6) The function increases in the intervals "\\ \\left( 0,1 \\right) ,\\ \\left( 1,+\\infty \\right)" , since "y'(x)>0"
The function decreases in the intervals "\\left( -\\infty ,-1 \\right) , \\left( -1,0 \\right)", since "y'(x)<0"
7) From 6) it follows that x=0 is a point of local and global minimum "\\ { y }_{ min }=y(0)=-1" . "\\lim _{ x\\rightarrow +\\infty }{ { \\left( { x }^{ 2 }-1 \\right) }^{ \\frac { 1 }{ 3 } }=+\\infty }" The range of function is "\\left[- 1,+\\infty \\right)"
8) "\\quad { y }^{ " }(x)=\\frac { 2 }{ 3 } { \\left[ { \\ \\left( { x }^{ 2 }-1 \\right) }^{ -\\frac { 2 }{ 3 } }-\\frac { 4 }{ 3 } { x }^{ 2 }{ \\left( { x }^{ 2 }-1 \\right) }^{ -\\frac { 5 }{ 3 } } \\right] }" "=-\\frac { 2 }{ 9 } { \\left( { x }^{ 2 }-1 \\right) }^{ -\\frac { 5 }{ 3 } }\\left( { x }^{ 2 }+3 \\right)"
"y"(x)>0" if "x\\in [0,1)" , "y"(x)<0" if "x\\in(1,+\\infty)" . Hence function is convex down in "(0,1)" and convex up in "(1,+\\infty)" .
Comments
Leave a comment