Question #104540
Using mean value theorem find the √11
1
Expert's answer
2020-03-04T17:59:06-0500

Let y=f(x)=x.y=f(x)=\sqrt{x}.

The mean value theorem states that


f(b)f(a)=f(c)(ba),a<c<bf(b) - f(a) = f'(c)(b-a), \quad a<c<b

Let bb is near aa then we can write Δx=ba\Delta x=b-a and rewrite the formula as


Δy=f(c)Δx\Delta y= f'(c)\Delta x

If Δx0,\Delta x \to 0, then we obtain


dy=f(x)dxdy=f'(x)dx

Thus, f(x+Δx)f(x)f(x)dx.f(x+\Delta x) - f(x) \approx f'(x)dx.

Therefore, f(x+Δx)f(x)+f(x)dx.f(x+\Delta x) \approx f(x) + f'(x)dx.

In this case,

x+Δx=11,x=9,Δx=dx=2, and f(x)=12xx+\Delta x=11, x = 9, \Delta x=dx=2, \text{ and } f'(x) = \frac{1}{2\sqrt{x}}

f(11)=119+1292=3+133.3333f(11)= \sqrt{11} \approx \sqrt{9} + \frac{1}{2\sqrt{9}}\cdot 2 = 3 + \frac{1}{3} \approx 3.3333


Answer: 113.3333.\sqrt{11} \approx 3.3333.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS