Let y = f ( x ) = x . y=f(x)=\sqrt{x}. y = f ( x ) = x .
The mean value theorem states that
f ( b ) − f ( a ) = f ′ ( c ) ( b − a ) , a < c < b f(b) - f(a) = f'(c)(b-a), \quad a<c<b f ( b ) − f ( a ) = f ′ ( c ) ( b − a ) , a < c < b Let b b b is near a a a then we can write Δ x = b − a \Delta x=b-a Δ x = b − a and rewrite the formula as
Δ y = f ′ ( c ) Δ x \Delta y= f'(c)\Delta x Δ y = f ′ ( c ) Δ x If Δ x → 0 , \Delta x \to 0, Δ x → 0 , then we obtain
d y = f ′ ( x ) d x dy=f'(x)dx d y = f ′ ( x ) d x Thus, f ( x + Δ x ) − f ( x ) ≈ f ′ ( x ) d x . f(x+\Delta x) - f(x) \approx f'(x)dx. f ( x + Δ x ) − f ( x ) ≈ f ′ ( x ) d x .
Therefore, f ( x + Δ x ) ≈ f ( x ) + f ′ ( x ) d x . f(x+\Delta x) \approx f(x) + f'(x)dx. f ( x + Δ x ) ≈ f ( x ) + f ′ ( x ) d x .
In this case,
x + Δ x = 11 , x = 9 , Δ x = d x = 2 , and f ′ ( x ) = 1 2 x x+\Delta x=11, x = 9, \Delta x=dx=2, \text{ and } f'(x) = \frac{1}{2\sqrt{x}} x + Δ x = 11 , x = 9 , Δ x = d x = 2 , and f ′ ( x ) = 2 x 1
f ( 11 ) = 11 ≈ 9 + 1 2 9 ⋅ 2 = 3 + 1 3 ≈ 3.3333 f(11)= \sqrt{11} \approx \sqrt{9} + \frac{1}{2\sqrt{9}}\cdot 2 = 3 + \frac{1}{3} \approx 3.3333 f ( 11 ) = 11 ≈ 9 + 2 9 1 ⋅ 2 = 3 + 3 1 ≈ 3.3333
Answer: 11 ≈ 3.3333. \sqrt{11} \approx 3.3333. 11 ≈ 3.3333.
Comments