fx′=2x−6y+6f_x'=2x-6y+6fx′=2x−6y+6 ,fy′=2y−6x+3f_y'=2y-6x+3fy′=2y−6x+3 , this implies x=1516,y=2116x=\frac{15}{16},y=\frac{21}{16}x=1615,y=1621 is a stationary point.
fxx′′=2f_{xx}''=2fxx′′=2,fxy′′=−6f_{xy}''=-6fxy′′=−6 ,fxy′′=2f_{xy}''=2fxy′′=2 hence (fxy′′)2−(fxx′′)(fyy′′)2>0(f_{xy}'')^2-(f_{xx}'')(f_{yy}'')^2>0(fxy′′)2−(fxx′′)(fyy′′)2>0, hence there is no extremum at this point, it is a saddle point.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments