please help me
A 200g block connected to a light spring for which the force constant is 5N/m is free to oscillate on a horizontal friction less surface. The block is displaced from equilibrium position and released from rest.
1)Determine amplitude, frequency and period.
2)Determine the maximum velocity and maximum acceleration.
3)Find the position, velocity and acceleration when time is one second.
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small A&=\\small d\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\rightarrow F&=\\small ma \\\\\n\\small -kx&=\\small m\\ddot{x}\\\\\n\\small \\ddot{x}&=\\small -\\frac{k}{m}x\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\omega^2&=\\small \\frac{k}{m}\\\\\n\\small \\omega&=\\small \\sqrt{\\frac{k}{m}}\\\\\n&=\\small \\bold{5\\,rad s^{-1}}\n\\end{aligned}" the frequancy
"\\\\\n\\qquad\\qquad\n\\begin{aligned}\n\\small \\omega&=\\small \\frac{2\\pi}{T}=5\\\\\n\\small T&=\\small \\bold{1.26\\,s}\n\\end{aligned}" the period
2.
"\\qquad\\qquad\n\\begin{aligned}\n\\small V_{max}&=\\small d\\times 5\\\\\n&=\\small \\bold{5d} \\,ms^{-1}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small |a_{max}|&=\\small \\omega^2x_{max}=\\omega^2A=5^2\\times d= \\bold{25d}\n\\end{aligned}"
3.
"\\qquad\\qquad\n\\begin{aligned}\n\\small x&=\\small A\\sin\\omega t=d\\sin(5\\times1)\\\\\n&=\\small \\bold{0.087d}\\,\\,m\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small V&=\\small \\dot{x}=A\\omega\\cos(\\omega t)=5d\\cos(5\\times 1)\\\\\n&=\\small \\bold{4.98d}\\,\\,ms^{-1}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small a&=\\small \\omega^2x=5^2\\times0.087d\\\\\n&=\\small \\bold{2.175d}\\,\\,ms^{-2}\n\\end{aligned}"
Comments
Leave a comment