Show that the maximum tension in the string of a simple pendulum, when the
amplitude θ is small, is mg(1+(θ)^2). At what position of the pendulum is the tension a
maximum?
Tension of the string when the string reaches the mid point
"T=T_m"
"T_m=mg+\\dfrac{mv^2}{l}"
Applying energy balance
"\\dfrac{1}{2}mv^2=mgl(1-cos\\theta)"
"v^2=2gl(1-cos\\theta)"
"v^2=2gl\\Big(2sin^2\\dfrac{\\theta}{2}\\Big)"
Substituting the value of "v^2" in above equation
"T_m=mg+2mgl\\dfrac{\\Big(2sin^2\\dfrac{\\theta}{2}\\Big)}{l}"
"T_m=mg+4mg\\Big(sin^2\\dfrac{\\theta}{2}\\Big)"
"T_m=mg\\Big(1+4sin^2\\dfrac{\\theta}{2}\\Big)"
for small "\\theta, \\space sin\\theta\\approx\\theta"
"T_m=mg\\Big(1+4\\Big(\\dfrac{\\theta}{2}\\Big)^2\\Big)"
"T_m=mg(1+\\theta^2)"
The tension of the string is maximum at extreme positions
Comments
Leave a comment