Answer to Question #190830 in Mechanics | Relativity for yelivi

Question #190830

Show that the maximum tension in the string of a simple pendulum, when the

amplitude θ is small, is mg(1+(θ)^2). At what position of the pendulum is the tension a

maximum?


1
Expert's answer
2021-05-09T13:04:40-0400


Tension of the string when the string reaches the mid point

T=TmT=T_m

Tm=mg+mv2lT_m=mg+\dfrac{mv^2}{l}


Applying energy balance

12mv2=mgl(1cosθ)\dfrac{1}{2}mv^2=mgl(1-cos\theta)

v2=2gl(1cosθ)v^2=2gl(1-cos\theta)

v2=2gl(2sin2θ2)v^2=2gl\Big(2sin^2\dfrac{\theta}{2}\Big)


Substituting the value of v2v^2 in above equation

Tm=mg+2mgl(2sin2θ2)lT_m=mg+2mgl\dfrac{\Big(2sin^2\dfrac{\theta}{2}\Big)}{l}

Tm=mg+4mg(sin2θ2)T_m=mg+4mg\Big(sin^2\dfrac{\theta}{2}\Big)

Tm=mg(1+4sin2θ2)T_m=mg\Big(1+4sin^2\dfrac{\theta}{2}\Big)

for small θ, sinθθ\theta, \space sin\theta\approx\theta

Tm=mg(1+4(θ2)2)T_m=mg\Big(1+4\Big(\dfrac{\theta}{2}\Big)^2\Big)

Tm=mg(1+θ2)T_m=mg(1+\theta^2)


The tension of the string is maximum at extreme positions


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment