Given:
Load P: 150 kN
Length L: 20 cm
Steel tube
Internal diameter "d_s": 15 cm
External diameter "D_s": 17 cm
Es = 21x106 N/cm2
Brass tube
Internal diameter "d_b": 17 cm
External diameter "D_b": 19 cm
Eb = 10x106 N/cm2
solution
Area of steel and brass tubes
"A_{s}=\\frac{\\pi}{4}(D^{2}_{s}-d^{2}_{s}=50.27cm^{2}"
"A_{b}=\\frac{\\pi}{4}(D^{2}_{b}-d^{2}_{b})=56.55cm^{2}"
Under the same load strain "\\epsilon" in steel equals the strain in brass:
"\\frac{\\sigma_{s}}{E_{s}}=\\frac{\\sigma_{b}}{E_{b}}"
"\\sigma_{s}=\\sigma_{b}\\frac{E_{s}}{E_{b}}"
Load on steel added to the load on brass equals the total load:
"P_{s}+P_{b}=P"
"\\sigma_{s}A_{s}+\\sigma_{b}A_{b}=P"
"\\sigma_{b}(\\frac{E_{s}}{E_{b}}A_{s}+A_{b})=P"
Load carried by brass and steel respectively:
"P_{b}=\\sigma_{s}A_{b}=\\frac{PA_{b}}{\\frac{E_{s}}{E_{b}}A_{s}+A_{b}}=\\frac{PE_{b}A_{b}}{E_{s}A_{s}+E_{b}A_{b}}=52.3kN"
"P_{s}=\\sigma_{s}A_{s}=\\frac{PA_{s}}{\\frac{E_{s}}{E_{b}}A_{s}+A_{b}}=\\frac{PE_{s}A_{s}}{E_{s}A_{s}+E_{b}A_{b}}=97.7kN"
Comments
Leave a comment