Question #128735
(3) A 20 cm long steel tube of 15 cm internal diameter and 1.0cm thickness is surrounded by a brass tube of the same length and thickness. The tubes carry an axial load of 150 kN. Estimate the load carried by each.
Es = 21 x 106 N/cm2 Eb = 10 x 106 N/cm2.
1
Expert's answer
2020-08-17T09:20:40-0400

Given:

Load P: 150 kN

Length L: 20 cm

Steel tube

Internal diameter dsd_s: 15 cm

External diameter DsD_s: 17 cm

Es = 21x106 N/cm2

Brass tube

Internal diameter dbd_b: 17 cm

External diameter DbD_b: 19 cm

Eb = 10x106 N/cm2


solution

Area of steel and brass tubes

As=π4(Ds2ds2=50.27cm2A_{s}=\frac{\pi}{4}(D^{2}_{s}-d^{2}_{s}=50.27cm^{2}

Ab=π4(Db2db2)=56.55cm2A_{b}=\frac{\pi}{4}(D^{2}_{b}-d^{2}_{b})=56.55cm^{2}

Under the same load strain ϵ\epsilon in steel equals the strain in brass:

σsEs=σbEb\frac{\sigma_{s}}{E_{s}}=\frac{\sigma_{b}}{E_{b}}

σs=σbEsEb\sigma_{s}=\sigma_{b}\frac{E_{s}}{E_{b}}

Load on steel added to the load on brass equals the total load:

Ps+Pb=PP_{s}+P_{b}=P

σsAs+σbAb=P\sigma_{s}A_{s}+\sigma_{b}A_{b}=P

σb(EsEbAs+Ab)=P\sigma_{b}(\frac{E_{s}}{E_{b}}A_{s}+A_{b})=P

Load carried by brass and steel respectively:

Pb=σsAb=PAbEsEbAs+Ab=PEbAbEsAs+EbAb=52.3kNP_{b}=\sigma_{s}A_{b}=\frac{PA_{b}}{\frac{E_{s}}{E_{b}}A_{s}+A_{b}}=\frac{PE_{b}A_{b}}{E_{s}A_{s}+E_{b}A_{b}}=52.3kN

Ps=σsAs=PAsEsEbAs+Ab=PEsAsEsAs+EbAb=97.7kNP_{s}=\sigma_{s}A_{s}=\frac{PA_{s}}{\frac{E_{s}}{E_{b}}A_{s}+A_{b}}=\frac{PE_{s}A_{s}}{E_{s}A_{s}+E_{b}A_{b}}=97.7kN


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS