Question #128734
solid shaft of 10cm diameter transmits 74 kW at 150 rev/min. Calculate (a) the torque on the shaft, (b) the maximum shear stress developed, (c) the angle of twist in a length of 1.50m, and (d) the shear stress at a radius of 3cm. Take G = 8 MN/cm2.
1
Expert's answer
2020-08-17T09:03:27-0400

a)The torque on the shaft


P=TwP=Tw

Where P is the power transmitted, T is the torque, and ω is the angular velocity (units are in terms of rad/s).

We can get the angular velocity from the rotation speed of the shaft (150 rev/min) knowing that 1rev=2πrad1 rev=2\pi rad

Solving for the torque,

74kW=74(kJS)=T(150revmin)(2πrad1rev)(1min60sec)74 kW= 74 (\frac {kJ}{S}) =T *( 150\frac{rev}{min}) (\frac{2\pi rad}{1 rev}) (\frac{1 min}{60 sec})


T=4.711kJT= 4.711 kJ


b)The maximum shear stress developed

Tmax=TcJT_{max} =\frac {Tc}{J}

Where TmaxT_{max} is the maximum shear stress, T is the torque applied, c is the radius of the circular shaft (half of the shaft diameter, 5 cm = 0.05 m), and J is the polar moment of inertia of the shaft.

J is calculated for a circular solid shaft via the following:

J=πc42J= \frac{\pi c4}{2}

Tmax=TcJ=2Tπ(c3)=(2)(4.711kJ)π(0.05m)3T_{max} =\frac{Tc}{J} =\frac{2T}{\pi(c^{3})} =\frac{(2)(4.711 kJ)}{\pi(0.05 m)^{3}}


Tmax=239992.9kPaT_{max} =239992.9 kPa


c) The angle of twist in a length of 1.50 m

 θ=TLGJ\theta= \frac{TL}{GJ}


Where θ\theta is the angle of twist, L is the length of the shaft, and G is the Modulus of Rigidity (provided asG=8mN/cm2=81010Nm2=80GPa)G= 8mN/cm^{2} =8*10^{10} Nm^{2}=80 GPa)


With T=4.711kJ=4711NmT=4.711kJ =4711 Nm, solving for the angle o twist:


J=πc42=π(0.05m)42=9.817106m4J= \frac{\pi c^{4}}{2} =\frac{\pi(0.05 m)^{4}}{2} =9.817*10^{-6} m^{4}


θ=TLGJ=(4711Nm)(1.50m)(81010Nm2)(9.817106m4)\theta=\frac{TL}{GJ}=\frac{(4711Nm)(1.50 m)}{(8*10^{10} \frac{N}{m^{2})} (9.817*10^{-6}m^{4})}


θ=8.997103rad\theta=8.997*10^{-3} rad


d)The shear stress at a radius of 3 cm

T=TpJT=\frac{Tp}{J}

Where p is the radial distance considered for the analysis. Solving,


T=TPJ=(4.711kJ)(0.03m)9.817106m4T=\frac{TP}{J}=\frac{(4.711kJ)(0.03 m)}{9.817*10^{-6}m{^4}}


T=14395.7kPaT=14395.7 kPa



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS