a) An average tensile stress at the yield point "\u03c3_y=\\frac{F_y}{A_1}=\\frac{4\\cdot80 \\cdot10^3}{\u03c0d_1^2}=\\frac{320 \\cdot10^3}{(2\\cdot10^{-2})^2\u03c0}=25.5\\cdot10^7=255" MPa.
b) An ultimate tensile stress "\u03c3_{max}=\\frac{F_{max}}{A_1}=\\frac{4\\cdot150 \\cdot10^3}{\u03c0d_1^2}=\\frac{4\\cdot150 \\cdot10^3}{(2\\cdot10^{-2})^2\u03c0}=47.7\\cdot10^7=477" MPa.
c) An average tensile stress at the bearing point "\u03c3_{d}=\\frac{F_{d}}{A_2}=\\frac{4\\cdot70 \\cdot10^3}{\u03c0d_2^2}=\\frac{280 \\cdot10^3}{(10^{-2})^2\u03c0}=89.1\\cdot10^7=891" MPa
Comments
Leave a comment