Ix=bh312=0.2⋅0.4312=0.00107(m4)I_x=\frac{bh^3}{12}=\frac{0.2\cdot0.4^3}{12}=0.00107(m^4)Ix=12bh3=120.2⋅0.43=0.00107(m4)
σmax=MmaxcIx→Mmax=σmaxIx/c=\sigma_{max}=\frac{M_{max}c}{I_x}\to M_{max}=\sigma_{max}I_x/c=σmax=IxMmaxc→Mmax=σmaxIx/c=
=2⋅106⋅0.00107/0.2=10700(N⋅m)=2\cdot10^6\cdot0.00107/0.2=10700(N\cdot m)=2⋅106⋅0.00107/0.2=10700(N⋅m)
M=2qx−qx2/2M=2qx-qx^2/2M=2qx−qx2/2
For x=2(m)x=2(m)x=2(m) M=MmaxM=M_{max}M=Mmax
2q⋅2−q⋅22/2=10700→q=5350(N/m)2q\cdot2-q\cdot2^2/2=10700\to q=5350(N/m)2q⋅2−q⋅22/2=10700→q=5350(N/m). Answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments