Answer to Question #128732 in Mechanics | Relativity for Ariyo Emmanuel

Question #128732
) A steel shaft ABCD having a total length of 3.5 m consists of three lengths having different sections as follows: AB is hollow having outside and inside diameters of 100 mm and 62.5 mm respectively, and BC and CD are solid. BC has a diameter of 100 mm and CD has a diameter of 87.5 mm. If the angle of twist is the same for each section, determine the length of each section. Find the value of the applied torque and the total angle of twist, if the maximum shear stress in the hollow portion is 47.5 MPa and shear modulus, C = 82.5 GPa. (Assuming the torque T and shear modulus are the same for all the sections).
1
Expert's answer
2020-08-20T09:51:01-0400

Diagrammatically the question is as shown below





First find the polar moment of inertia of the hollow shaft AB


j1=π32[(do) 4(di)4]=π32[(100)4(62.5)4]=8.32×106mmj_1=\frac{\pi}{32}[(d_o)\space ^4-(d_i)^4]=\frac{\pi}{32}[(100)^4-(62.5)^4]=8.32\times10^6mm


polar moment of inertia of solid shaft BC


J2=π32(d2)4=π32(100)4=9.82×106mmJ_2=\frac{\pi}{32}(d_2)^4=\frac{\pi}{32}(100)^4=9.82\times10^6mm


polar moment of inertia of solid shaft CD


J3=π32(d3)4=π32(87.50)4=5.75×106mmJ_3=\frac{\pi}{32}(d_3)^4=\frac{\pi}{32}(87.50)^4=5.75\times10^6mm


Now obtain the angle of twist of hollow shaft AB , solid shaft BC and CD


Angle of twist θ1=T×l1C×J1\theta_1=\frac{T\times l_1}{C\times J_1}


The angle of twist is the same for each section i.e


θ1=θ2=T×l1C×J1=8.32×1069.82×106=0.847\theta_1=\theta_2=\frac{T\times l_1}{C\times J_1}=\frac{8.32\times10^6}{9.82\times10^6}=0.847


Now to find the length of each section


l1+l2+l3=L=3500mml_1+l_2+l_3=L=3500mm


factoring out l1l_1 the equation becomes


l1(1+l2l1+l3l1)=3500l_1(1+\frac{l_2}{l_1}+\frac{l_3}{l_1})=3500


l1(1+10.847+11.447)=3500l_1(1+\frac{1}{0.847}+\frac{1}{1.447})=3500


l1l_1 becomes 35002.8717=1218.8mm\frac{3500}{2.8717}=1218.8mm


l2=l10.847=1218.80.847=1439mml_2=\frac{l_1}{0.847}=\frac{1218.8}{0.847}=1439mm

l3=l11.447=1218.81.447=842.2mml_3=\frac{l_1}{1.447}=\frac{1218.8}{1.447}=842.2mm


length = l1=1218.8mm l2=1439mm l3=842.2mml_1=1218.8mm\space l_2=1439mm\space l_3=842.2mm


Now use the given maximum shear stress in the hollow portion to get the torque of the hollow shaft

T=π16×τ[(do)4(di)4do]=π16×47.5[100462.54100]=7.9×106N/mT=\frac{\pi}{16}\times \tau[\frac{(d_o)^4-(d_i)^4}{d_o}]=\frac{\pi}{16}\times47.5[\frac{100^4-62.5^4}{100}]=7.9\times10^6 N/m


Applied torque=7.9×106N/m7.9\times10^6N/m


Total angle of twist is equal to the sum of the angle of twists of the individual shafts

angle of twist

θ=T×lC×J\theta=\frac{T\times l}{C\times J}


θ=T×l1C×J1+T×l2C×J2+T×l3C×J3\theta=\frac{T\times l_1}{C\times J_1}+\frac{T\times l_2}{C\times J_2}+\frac{T\times l_3}{C\times J_3}


=TC[l1j1+l2j2+l3j3]=\frac{T}{C}[\frac{l_1}{j_1}+\frac{l_2}{j_2}+\frac{l_3}{j_3}]


=7.9×10682.5×103[1218.88.32×106+14399.82×106+842.25.75×106]=0.042rad=\frac{7.9\times10^6}{82.5\times10^3}[\frac{1218.8}{8.32\times10^6}+\frac{1439}{9.82\times10^6}+\frac{842.2}{5.75\times10^6}]=0.042rad


θ=0.042×180π=2.406°\theta=0.042\times\frac{180}{\pi}=2.406\degree


Total angle of twist =2.406°2.406\degree







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment