Diagrammatically the question is as shown below
First find the polar moment of inertia of the hollow shaft AB
"j_1=\\frac{\\pi}{32}[(d_o)\\space ^4-(d_i)^4]=\\frac{\\pi}{32}[(100)^4-(62.5)^4]=8.32\\times10^6mm"
polar moment of inertia of solid shaft BC
"J_2=\\frac{\\pi}{32}(d_2)^4=\\frac{\\pi}{32}(100)^4=9.82\\times10^6mm"
polar moment of inertia of solid shaft CD
"J_3=\\frac{\\pi}{32}(d_3)^4=\\frac{\\pi}{32}(87.50)^4=5.75\\times10^6mm"
Now obtain the angle of twist of hollow shaft AB , solid shaft BC and CD
Angle of twist "\\theta_1=\\frac{T\\times l_1}{C\\times J_1}"
The angle of twist is the same for each section i.e
"\\theta_1=\\theta_2=\\frac{T\\times l_1}{C\\times J_1}=\\frac{8.32\\times10^6}{9.82\\times10^6}=0.847"
Now to find the length of each section
"l_1+l_2+l_3=L=3500mm"
factoring out "l_1" the equation becomes
"l_1(1+\\frac{l_2}{l_1}+\\frac{l_3}{l_1})=3500"
"l_1(1+\\frac{1}{0.847}+\\frac{1}{1.447})=3500"
"l_1" becomes "\\frac{3500}{2.8717}=1218.8mm"
"l_2=\\frac{l_1}{0.847}=\\frac{1218.8}{0.847}=1439mm"
"l_3=\\frac{l_1}{1.447}=\\frac{1218.8}{1.447}=842.2mm"
length = "l_1=1218.8mm\\space l_2=1439mm\\space l_3=842.2mm"
Now use the given maximum shear stress in the hollow portion to get the torque of the hollow shaft
"T=\\frac{\\pi}{16}\\times \\tau[\\frac{(d_o)^4-(d_i)^4}{d_o}]=\\frac{\\pi}{16}\\times47.5[\\frac{100^4-62.5^4}{100}]=7.9\\times10^6 N\/m"
Applied torque="7.9\\times10^6N\/m"
Total angle of twist is equal to the sum of the angle of twists of the individual shafts
angle of twist
"\\theta=\\frac{T\\times l}{C\\times J}"
"\\theta=\\frac{T\\times l_1}{C\\times J_1}+\\frac{T\\times l_2}{C\\times J_2}+\\frac{T\\times l_3}{C\\times J_3}"
"=\\frac{T}{C}[\\frac{l_1}{j_1}+\\frac{l_2}{j_2}+\\frac{l_3}{j_3}]"
"=\\frac{7.9\\times10^6}{82.5\\times10^3}[\\frac{1218.8}{8.32\\times10^6}+\\frac{1439}{9.82\\times10^6}+\\frac{842.2}{5.75\\times10^6}]=0.042rad"
"\\theta=0.042\\times\\frac{180}{\\pi}=2.406\\degree"
Total angle of twist ="2.406\\degree"
Comments
Leave a comment