Diagrammatically the question is as shown below
First find the polar moment of inertia of the hollow shaft AB
j1=32π[(do) 4−(di)4]=32π[(100)4−(62.5)4]=8.32×106mm
polar moment of inertia of solid shaft BC
J2=32π(d2)4=32π(100)4=9.82×106mm
polar moment of inertia of solid shaft CD
J3=32π(d3)4=32π(87.50)4=5.75×106mm
Now obtain the angle of twist of hollow shaft AB , solid shaft BC and CD
Angle of twist θ1=C×J1T×l1
The angle of twist is the same for each section i.e
θ1=θ2=C×J1T×l1=9.82×1068.32×106=0.847
Now to find the length of each section
l1+l2+l3=L=3500mm
factoring out l1 the equation becomes
l1(1+l1l2+l1l3)=3500
l1(1+0.8471+1.4471)=3500
l1 becomes 2.87173500=1218.8mm
l2=0.847l1=0.8471218.8=1439mm
l3=1.447l1=1.4471218.8=842.2mm
length = l1=1218.8mm l2=1439mm l3=842.2mm
Now use the given maximum shear stress in the hollow portion to get the torque of the hollow shaft
T=16π×τ[do(do)4−(di)4]=16π×47.5[1001004−62.54]=7.9×106N/m
Applied torque=7.9×106N/m
Total angle of twist is equal to the sum of the angle of twists of the individual shafts
angle of twist
θ=C×JT×l
θ=C×J1T×l1+C×J2T×l2+C×J3T×l3
=CT[j1l1+j2l2+j3l3]
=82.5×1037.9×106[8.32×1061218.8+9.82×1061439+5.75×106842.2]=0.042rad
θ=0.042×π180=2.406°
Total angle of twist =2.406°
Comments
Leave a comment