12As per question,
length of rectangular beam, say l=3.4m
Breadth of rectangular beam, say b=25mm
Height of rectangular beam, say h=100mm
Let I be the moment of inertia of rectangular rod,
I="\\frac{bh^3}{12}"
="\\frac{25\\times100^3}{12}"
=2.08"\\times" "10^6""mm^4"
Let M be the bending moment of rod,
Bending moment of rod can be calculated using bending moment digrams,
from diagram we get bending moment, M=1275 Nm=1275"\\times 10^3" Nmm
using the bending stress equation,
"\\frac{s}{c}=\\frac{M}{I}"
where,
s=Maximum bending stress
c= Distance from the neutral axis
M=Bending Moment
I=Moment of inertia
putting the values in above equation,
"\\frac{s}{1.7\\times 10^3}=\\frac{1275\\times 10^3}{2.08\\times 10^6}"
on solving we get
s=1042.06N/"mm^2"
This is the maximum bending stress.
Comments
Leave a comment