xf(x)142.57.54135.517.5
By Lagrange’s interpolation formula we have:
f(x)=(x0−x1)(x0−x2)(x0−x3)(x−x1)(x−x2)(x−x3)y0+(x1−x0)(x1−x2)(x1−x3)(x−x0)(x−x2)(x−x3)y1+(x2−x0)(x2−x1)(x2−x3)(x−x0)(x−x1)(x−x3)y2+(x3−x0)(x3−x1)(x3−x2)(x−x0)(x−x1)(x−x2)y3=(1−2.5)(1−4)(1−5.5)(x−2.5)(x−4)(x−5.5)4+(2.5−1)(2.5−4)(2.5−5.5)(x−1)(x−4)(x−5.5)7.5+(4−1)(4−2.5)(4−5.5)(x−1)(x−2.5)(x−5.5)13+(5.5−1)(5.5−2.5)(5.5−4)(x−1)(x−2.5)(x−4)17.5=−8116(x3−12x2+45.75x−55)+910(x3−10.5x2+31.5x−22)−2752(x3−9x2+21.75x−13.75)+8170(x3−7.5x2+16.5x−10)=−274x3+914x2−915x+27115
f(5)=−274⋅53+914⋅52−915⋅5+27115=27440
Answer: f(x)=−274x3+914x2−915x+27115 and f(5)=27440 .
Comments