Question #153499

Find a Lagrange’s interpolating polynomial for the data given below:

x0 = 1, x1 = 2.5, x2 = 4 and x3 = 5.5

f(x0) = 4, f(x1) = 7.5, f(x2) = 13 and f(x3) = 17.5

Also, find the value of f(5).


1
Expert's answer
2021-01-12T01:13:32-0500

x12.545.5f(x)47.51317.5\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} x & 1 & 2.5 & 4 & 5.5 \\ \hline f(x)& 4& 7.5 & 13 & 17.5 \\ \hdashline \end{array}

By Lagrange’s interpolation formula we have:

f(x)=(xx1)(xx2)(xx3)(x0x1)(x0x2)(x0x3)y0+(xx0)(xx2)(xx3)(x1x0)(x1x2)(x1x3)y1+(xx0)(xx1)(xx3)(x2x0)(x2x1)(x2x3)y2+(xx0)(xx1)(xx2)(x3x0)(x3x1)(x3x2)y3=(x2.5)(x4)(x5.5)(12.5)(14)(15.5)4+(x1)(x4)(x5.5)(2.51)(2.54)(2.55.5)7.5+(x1)(x2.5)(x5.5)(41)(42.5)(45.5)13+(x1)(x2.5)(x4)(5.51)(5.52.5)(5.54)17.5=1681(x312x2+45.75x55)+109(x310.5x2+31.5x22)5227(x39x2+21.75x13.75)+7081(x37.5x2+16.5x10)=427x3+149x2159x+11527f(x)= \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0+ \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1+ \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2+ \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3= \frac{(x-2.5)(x-4)(x-5.5)}{(1-2.5)(1-4)(1-5.5)}4+ \frac{(x-1)(x-4)(x-5.5)}{(2.5-1)(2.5-4)(2.5-5.5)} 7.5+ \frac{(x-1)(x-2.5)(x-5.5)}{(4-1)(4-2.5)(4-5.5)}13+ \frac{(x-1)(x-2.5)(x-4)}{(5.5-1)(5.5-2.5)(5.5-4)} 17.5=-\tfrac{16}{81}(x^3-12x^2+45.75x-55)+\tfrac{10}{9}(x^3-10.5x^2+31.5x-22)-\tfrac{52}{27}(x^3-9x^2+21.75x-13.75)+\tfrac{70}{81}(x^3-7.5x^2+16.5x-10)=-\tfrac{4}{27}x^3+\tfrac{14}{9}x^2-\tfrac{15}{9}x+\tfrac{115}{27}


f(5)=42753+149521595+11527=44027f(5)= -\tfrac{4}{27}\cdot 5^3+\tfrac{14}{9}\cdot5^2-\tfrac{15}{9}\cdot 5+\tfrac{115}{27}=\tfrac{440}{27}


Answer: f(x)=427x3+149x2159x+11527f(x)= -\tfrac{4}{27}x^3+\tfrac{14}{9}x^2-\tfrac{15}{9}x+\tfrac{115}{27} and f(5)=44027f(5)=\tfrac{440}{27} .




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS