Question #153479

If y(1) = – 3, y(3) = 9, y(4) = 30, and y(6) = 132, find the four-point

Lagrange interpolation polynomial that takes the same values as the function y at the given points.


1
Expert's answer
2021-01-06T19:53:01-0500
x0=1,x1=3,x2=4,x3=6y0=3,y1=9,y2=30,y3=132\begin{matrix} x_0=1, & x_1=3, & x_2=4, & x_3=6 \\ y_0=-3, & y_1=9, & y_2=30, & y_3=132 \end{matrix}


The interpolating polynomial is:

L(x)=(xx1)(xx2)(xx3)(x0x1)(x0x2)(x0x3)×y0L(x)=\dfrac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}\times y_0

+(xx0)(xx2)(xx3)(x1x0)(x1x2)(x1x3)×y1+\dfrac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}\times y_1

+(xx0)(xx1)(xx3)(x2x0)(x2x1)(x2x3)×y2+\dfrac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}\times y_2

+(xx0)(xx1)(xx2)(x3x0)(x3x1)(x3x2)×y3+\dfrac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}\times y_3





L(x)=(x3)(x4)(x6)(13)(14)(16)×(3)L(x)=\dfrac{(x-3)(x-4)(x-6)}{(1-3)(1-4)(1-6)}\times (-3)

+(x1)(x4)(x6)(31)(34)(36)×9+\dfrac{(x-1)(x-4)(x-6)}{(3-1)(3-4)(3-6)}\times 9

+(x1)(x3)(x6)(41)(43)(46)×30+\dfrac{(x-1)(x-3)(x-6)}{(4-1)(4-3)(4-6)}\times30

+(x1)(x3)(x4)(61)(63)(64)×132+\dfrac{(x-1)(x-3)(x-4)}{(6-1)(6-3)(6-4)}\times 132

=x33x2+5x6=x^3-3x^2+5x-6

L(x)=x33x2+5x6L(x)=x^3-3x^2+5x-6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS