xy11010.81308.11605.51904.8 , where x is temperature, y is viscosity.
By Lagrange’s interpolation formula we have:
y=f(x)=(x0−x1)(x0−x2)(x0−x3)(x−x1)(x−x2)(x−x3)y0+(x1−x0)(x1−x2)(x1−x3)(x−x0)(x−x2)(x−x3)y1+(x2−x0)(x2−x1)(x2−x3)(x−x0)(x−x1)(x−x3)y2+(x3−x0)(x3−x1)(x3−x2)(x−x0)(x−x1)(x−x2)y3
We put x=140 :
y(140)=f(140)=(110−130)(110−160)(110−190)(140−130)(140−160)(140−190)10.8+(130−110)(130−160)(130−190)(140−110)(140−160)(140−190)8.1+(160−110)(160−130)(160−190)(140−110)(140−130)(140−190)5.5+(190−110)(190−130)(190−160)(140−110)(140−130)(140−160)4.8=−81⋅10.8+65⋅8.1+31⋅5.5−241⋅4.8=7.033
Answer: the viscosity of oil at a temperature of 140∘ is 7.033 .
Comments