Question #153485

The following table gives the viscosity of an oil as a function of temperature. Use Lagrange’s formula to find the viscosity of oil at a temperature of 140°.

Temp° : 110 130 160 190

Viscosity: 10.8 8.1 5.5 4.8


1
Expert's answer
2021-01-11T15:06:23-0500

x110130160190y10.88.15.54.8\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} x & 110 & 130 & 160 & 190 \\ \hline y & 10.8 & 8.1 & 5.5 & 4.8 \\ \end{array} , where xx is temperature, yy is viscosity.

By Lagrange’s interpolation formula we have:

y=f(x)=(xx1)(xx2)(xx3)(x0x1)(x0x2)(x0x3)y0+(xx0)(xx2)(xx3)(x1x0)(x1x2)(x1x3)y1+(xx0)(xx1)(xx3)(x2x0)(x2x1)(x2x3)y2+(xx0)(xx1)(xx2)(x3x0)(x3x1)(x3x2)y3y=f(x)= \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0+ \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1+ \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2+ \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3

We put x=140x=140 :

y(140)=f(140)=(140130)(140160)(140190)(110130)(110160)(110190)10.8+(140110)(140160)(140190)(130110)(130160)(130190)8.1+(140110)(140130)(140190)(160110)(160130)(160190)5.5+(140110)(140130)(140160)(190110)(190130)(190160)4.8=1810.8+568.1+135.51244.8=7.033y(140)=f(140)= \frac{(140-130)(140-160)(140-190)}{(110-130)(110-160)(110-190)}10.8+ \frac{(140-110)(140-160)(140-190)}{(130-110)(130-160)(130-190)} 8.1+ \frac{(140-110)(140-130)(140-190)}{(160-110)(160-130)(160-190)}5.5+ \frac{(140-110)(140-130)(140-160)}{(190-110)(190-130)(190-160)} 4.8=-\frac{1}{8}\cdot 10.8+\frac{5}{6}\cdot8.1+\frac{1}{3}\cdot 5.5-\frac{1}{24}\cdot4.8=7.033


Answer: the viscosity of oil at a temperature of 140140^\circ is 7.0337.033 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS