Question #153480

Given the table of values

x: 50 52 54 56

3√x : 3.684 3.732 3.779 3.825

Use Lagrange’s formula to find x when 3√x = 3.756,


1
Expert's answer
2021-01-07T15:32:36-0500

x:50525456y=x3:3.6843.7323.7793.825\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} x: & 50 & 52 & 54 & 56 \\ \hline y=\sqrt[3]{x}: & 3.684 & 3.732 & 3.779 & 3.825\\ \hdashline \end{array}

By Lagrange’s interpolation formula for inverse interpolation, we have:

x=f1(y)=(yy1)(yy2)(yy3)(y0y1)(y0y2)(y0y3)x0+(yy0)(yy2)(yy3)(y1y0)(y1y2)(y1y3)x1+(yy0)(yy1)(yy3)(y2y0)(y2y1)(y2y3)x2+(yy0)(yy1)(yy2)(y3y0)(y3y1)(y3y2)x3x=f^{-1}(y)= \frac{(y-y_1)(y-y_2)(y-y_3)}{(y_0-y_1)(y_0-y_2)(y_0-y_3)}x_0+ \frac{(y-y_0)(y-y_2)(y-y_3)}{(y_1-y_0)(y_1-y_2)(y_1-y_3)} x_1+ \frac{(y-y_0)(y-y_1)(y-y_3)}{(y_2-y_0)(y_2-y_1)(y_2-y_3)}x_2+ \frac{(y-y_0)(y-y_1)(y-y_2)}{(y_3-y_0)(y_3-y_1)(y_3-y_2)} x_3

We put y=3.756y=3.756 :

x(3.756)=f1(3.756)=(3.7563.732)(3.7563.779)(3.7563.825)(3.6843.732)(3.6843.779)(3.6843.825)50+(3.7563.684)(3.7563.779)(3.7563.825)(3.7323.684)(3.7323.779)(3.7323.825)52+(3.7563.684)(3.7563.732)(3.7563.825)(3.7793.684)(3.7793.732)(3.7793.825)54+(3.7563.684)(3.7563.732)(3.7563.779)(3.8253.684)(3.8253.732)(3.8253.779)56=529893050+1587291452+25924465549614575653.016x(3.756)=f^{-1}(3.756)= \frac{(3.756-3.732)(3.756-3.779)(3.756-3.825)}{(3.684-3.732)(3.684-3.779)(3.684-3.825)}50+ \frac{(3.756-3.684)(3.756-3.779)(3.756-3.825)}{(3.732-3.684)(3.732-3.779)(3.732-3.825)} 52+ \frac{(3.756-3.684)(3.756-3.732)(3.756-3.825)}{(3.779-3.684)(3.779-3.732)(3.779-3.825)}54+ \frac{(3.756-3.684)(3.756-3.732)(3.756-3.779)}{(3.825-3.684)(3.825-3.732)(3.825-3.779)} 56=-\frac{529}{8930}\cdot 50+\frac{1587}{2914}\cdot 52 +\frac{2592}{4465}\cdot 54-\frac{96}{1457}\cdot 56\approx 53.016


Answer: x53.016x\approx 53.016 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS