x:y=x:15012.24715212.32915412.41015612.490
By Lagrange’s interpolation formula we have:
y=f(x)=(x0−x1)(x0−x2)(x0−x3)(x−x1)(x−x2)(x−x3)y0+(x1−x0)(x1−x2)(x1−x3)(x−x0)(x−x2)(x−x3)y1+(x2−x0)(x2−x1)(x2−x3)(x−x0)(x−x1)(x−x3)y2+(x3−x0)(x3−x1)(x3−x2)(x−x0)(x−x1)(x−x2)y3
We put x=155 :
y(155)=f(155)=(150−152)(150−154)(150−156)(155−152)(155−154)(155−156)12.247+(152−150)(152−154)(152−156)(155−150)(155−154)(155−156)12.329+(154−150)(154−152)(154−156)(155−150)(155−152)(155−156)12.410+(156−150)(156−152)(156−154)(155−150)(155−152)(155−154)12.490=0.0625⋅12.247−0.3125⋅12.329+0.9375⋅12.410+0.3125⋅12.490≈12.450
Answer: 155≈12.450.
Comments