Given the table of values
x : 150 152 154 156
y = √x : 12.247 12.329 12.410 12.490
Evaluate √155 using Lagrange’s interpolation formula.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n x: & 150 & 152 & 154 & 156 \\\\ \\hline\n y=\\sqrt{x}: & 12.247 & 12.329 & 12.410 & 12.490 \\\\\n \\hdashline\n \n\\end{array}"
By Lagrange’s interpolation formula we have:
"y=f(x)= \\frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0+ \\frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1+ \\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2+ \\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3"
We put "x=155" :
"y(155)=f(155)= \\frac{(155-152)(155-154)(155-156)}{(150-152)(150-154)(150-156)}12.247+ \\frac{(155-150)(155-154)(155-156)}{(152-150)(152-154)(152-156)} 12.329+ \\frac{(155-150)(155-152)(155-156)}{(154-150)(154-152)(154-156)}12.410+ \\frac{(155-150)(155-152)(155-154)}{(156-150)(156-152)(156-154)} 12.490=0.0625\\cdot 12.247-0.3125\\cdot 12.329\n+0.9375\\cdot 12.410+0.3125\\cdot 12.490\\approx 12.450"
Answer: "\\sqrt{155}\\approx 12.450."
Comments
Leave a comment