Question #153478

Given the table of values

x : 150 152 154 156

y = √x : 12.247 12.329 12.410 12.490

Evaluate √155 using Lagrange’s interpolation formula.


1
Expert's answer
2021-01-06T19:52:16-0500

x:150152154156y=x:12.24712.32912.41012.490\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} x: & 150 & 152 & 154 & 156 \\ \hline y=\sqrt{x}: & 12.247 & 12.329 & 12.410 & 12.490 \\ \hdashline \end{array}


By Lagrange’s interpolation formula we have:

y=f(x)=(xx1)(xx2)(xx3)(x0x1)(x0x2)(x0x3)y0+(xx0)(xx2)(xx3)(x1x0)(x1x2)(x1x3)y1+(xx0)(xx1)(xx3)(x2x0)(x2x1)(x2x3)y2+(xx0)(xx1)(xx2)(x3x0)(x3x1)(x3x2)y3y=f(x)= \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0+ \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1+ \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2+ \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3

We put x=155x=155 :

y(155)=f(155)=(155152)(155154)(155156)(150152)(150154)(150156)12.247+(155150)(155154)(155156)(152150)(152154)(152156)12.329+(155150)(155152)(155156)(154150)(154152)(154156)12.410+(155150)(155152)(155154)(156150)(156152)(156154)12.490=0.062512.2470.312512.329+0.937512.410+0.312512.49012.450y(155)=f(155)= \frac{(155-152)(155-154)(155-156)}{(150-152)(150-154)(150-156)}12.247+ \frac{(155-150)(155-154)(155-156)}{(152-150)(152-154)(152-156)} 12.329+ \frac{(155-150)(155-152)(155-156)}{(154-150)(154-152)(154-156)}12.410+ \frac{(155-150)(155-152)(155-154)}{(156-150)(156-152)(156-154)} 12.490=0.0625\cdot 12.247-0.3125\cdot 12.329 +0.9375\cdot 12.410+0.3125\cdot 12.490\approx 12.450


Answer: 15512.450.\sqrt{155}\approx 12.450.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS