Question #153449

Find the value of tan 33° by Lagrange’s formula if

tan 30° = 0.5774, tan 32° = 0.6249,

tan 35° = 0.7002, tan 38° = 0.7813.


1
Expert's answer
2021-01-03T15:56:34-0500

Here the intervals are unequal.


x0=30y0=0.5774x1=32y1=0.6249x2=35y2=0.7002x3=38y3=0.7813\begin{matrix} x_0=30 & y_0=0.5774 \\ \\ x_1=32 & y_1=0.6249 \\ \\ x_2=35 & y_2=0.7002 \\ \\ x_3=38 & y_3=0.7813 \\ \end{matrix}

By Lagrange’s interpolation formula we have

y=f(x)=(xx1)(xx2)(xx3)(x0x1)(x0x2)(x0x3)×y0y=f(x)=\dfrac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}\times y_0

+(xx0)(xx2)(xx3)(x1x0)(x1x2)(x1x3)×y1+\dfrac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}\times y_1

+(xx0)(xx1)(xx3)(x2x0)(x2x1)(x2x3)×y2+\dfrac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}\times y_2

+(xx0)(xx1)(xx2)(x3x0)(x3x1)(x3x2)×y3+\dfrac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}\times y_3



Put x=33x=33

f(33)=(3332)(3335)(3338)(3032)(3035)(3038)×0.5774f(33)=\dfrac{(33-32)(33-35)(33-38)}{(30-32)(30-35)(30-38)}\times 0.5774

+(3330)(3335)(3338)(3230)(3235)(3238)×0.6249+\dfrac{(33-30)(33-35)(33-38)}{(32-30)(32-35)(32-38)}\times 0.6249


+(3330)(3332)(3338)(3530)(3532)(3538)×0.7002+\dfrac{(33-30)(33-32)(33-38)}{(35-30)(35-32)(35-38)}\times 0.7002

+(3330)(3332)(3335)(3830)(3832)(3835)×0.7813+\dfrac{(33-30)(33-32)(33-35)}{(38-30)(38-32)(38-35)}\times 0.7813

=0.6494=0.6494

tan33°=0.6494\tan33\degree=0.6494



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS