Question #152963

Find by lagrange’s formula, the value of

U5 if U0 = 1 , U3 = 19 , U4 = 49 , U6 = 181


1
Expert's answer
2020-12-28T18:43:46-0500

Here the intervals are unequal. By Lagrange’s interpolation formula we have


x0=0,x1=3,x2=4,x3=6y0=1,y1=19,y2=49,y3=181\begin{matrix} x_0=0, & x_1=3, & x_2=4, & x_3=6 \\ y_0=1, & y_1=19, & y_2=49, & y_3=181 \end{matrix}

y=f(x)=(xx1)(xx2)(xx3)(x0x1)(x0x2)(x0x3)×y0y=f(x)=\dfrac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}\times y_0

+(xx0)(xx2)(xx3)(x1x0)(x1x2)(x1x3)×y1+\dfrac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}\times y_1

+(xx0)(xx1)(xx3)(x2x0)(x2x1)(x2x3)×y2+\dfrac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}\times y_2

+(xx0)(xx1)(xx2)(x3x0)(x3x1)(x3x2)×y3+\dfrac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}\times y_3

Put x=5x=5


f(5)=(53)(54)(56)(03)(04)(06)×1f(5)=\dfrac{(5-3)(5-4)(5-6)}{(0-3)(0-4)(0-6)}\times 1

+(50)(54)(56)(30)(34)(36)×19+\dfrac{(5-0)(5-4)(5-6)}{(3-0)(3-4)(3-6)}\times 19

+(50)(53)(56)(40)(43)(46)×49+\dfrac{(5-0)(5-3)(5-6)}{(4-0)(4-3)(4-6)}\times 49

+(50)(53)(54)(60)(63)(64)×181+\dfrac{(5-0)(5-3)(5-4)}{(6-0)(6-3)(6-4)}\times 181

=101=101

U5=101U5=101



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS