Let f(x)=x3−x2+2x−2
Use initial guesses x0=−2,x1=0,x2=2
f(x0)=f(−2)=−18
f(x1)=f(0)=−2
f(x2)=f(2)=6
h0=x1−x0=0−(−2)=2
h1=x2−x1=2−0=2
δ0=h0f(x1)−f(x0)=2−2−(−18)=8 δ1=h1f(x2)−f(x1)=26−(−2)=4
a=h1+h0δ1−δ0=2+24−8=−1
b=a×h1+δ1=−1×2+4=2
c=f(x2)=f(2)=6
x3=x2+b±b2−4ac−2c
x3=2+2+22−4(−1)(6)−2(6)=0.35424869 Relative percent error
εa1=∣x3x3−x2∣⋅100%
nx0x1x2f(x0)f(x1)f(x2)abcx3εan1−202−18−26−1260.354249464.5751312020.354249−26−1.37253961.3542492.250984−1.37253960.82861857.248251320.3542490.8286186−1.3725396−0.4604362.1828672.958255−0.4604360.96959714.539952
nx0x1x2f(x0)f(x1)f(x2)abcx3εan40.3542490.8286180.969597−1.372539−0.460436−0.0893891.1524672.794410−0.0893891.0011743.15401250.8286180.9695971.001174−0.460436−0.0893890.0035251.7993892.9992520.0035250.9999980.11761260.9695971.0011740.999998−0.0893890.003525−0.0000061.9707693.000028−0.00000610.000204
Approximate root of the equation x3−x2+2x−2=0 using Muller method is 1 (After 6 iterations)
Comments