Let f ( x ) = x 3 − x 2 + 2 x − 2 f(x)=x^3-x^2+2x-2 f ( x ) = x 3 − x 2 + 2 x − 2
Use initial guesses x 0 = − 2 , x 1 = 0 , x 2 = 2 x_0=-2, x_1=0, x_2=2 x 0 = − 2 , x 1 = 0 , x 2 = 2
f ( x 0 ) = f ( − 2 ) = − 18 f(x_0)=f(-2)=-18 f ( x 0 ) = f ( − 2 ) = − 18
f ( x 1 ) = f ( 0 ) = − 2 f(x_1)=f(0)=-2 f ( x 1 ) = f ( 0 ) = − 2
f ( x 2 ) = f ( 2 ) = 6 f(x_2)=f(2)=6 f ( x 2 ) = f ( 2 ) = 6
h 0 = x 1 − x 0 = 0 − ( − 2 ) = 2 h_0=x_1-x_0=0-(-2)=2 h 0 = x 1 − x 0 = 0 − ( − 2 ) = 2
h 1 = x 2 − x 1 = 2 − 0 = 2 h_1=x_2-x_1=2-0=2 h 1 = x 2 − x 1 = 2 − 0 = 2
δ 0 = f ( x 1 ) − f ( x 0 ) h 0 = − 2 − ( − 18 ) 2 = 8 \delta_0=\dfrac{f(x_1)-f(x_0)}{h_0}=\dfrac{-2-(-18)}{2}=8 δ 0 = h 0 f ( x 1 ) − f ( x 0 ) = 2 − 2 − ( − 18 ) = 8 δ 1 = f ( x 2 ) − f ( x 1 ) h 1 = 6 − ( − 2 ) 2 = 4 \delta_1=\dfrac{f(x_2)-f(x_1)}{h_1}=\dfrac{6-(-2)}{2}=4 δ 1 = h 1 f ( x 2 ) − f ( x 1 ) = 2 6 − ( − 2 ) = 4
a = δ 1 − δ 0 h 1 + h 0 = 4 − 8 2 + 2 = − 1 a=\dfrac{\delta_1-\delta_0}{h_1+h_0}=\dfrac{4-8}{2+2}=-1 a = h 1 + h 0 δ 1 − δ 0 = 2 + 2 4 − 8 = − 1
b = a × h 1 + δ 1 = − 1 × 2 + 4 = 2 b=a\times h_1+\delta_1=-1\times2+4=2 b = a × h 1 + δ 1 = − 1 × 2 + 4 = 2
c = f ( x 2 ) = f ( 2 ) = 6 c=f(x_2)=f(2)=6 c = f ( x 2 ) = f ( 2 ) = 6
x 3 = x 2 + − 2 c b ± b 2 − 4 a c x_3=x_2+\dfrac{-2c}{b\pm\sqrt{b^2-4ac}} x 3 = x 2 + b ± b 2 − 4 a c − 2 c
x 3 = 2 + − 2 ( 6 ) 2 + 2 2 − 4 ( − 1 ) ( 6 ) = 0.35424869 x_3=2+\dfrac{-2(6)}{2+\sqrt{2^2-4(-1)(6)}}=0.35424869 x 3 = 2 + 2 + 2 2 − 4 ( − 1 ) ( 6 ) − 2 ( 6 ) = 0.35424869 Relative percent error
ε a 1 = ∣ x 3 − x 2 x 3 ∣ ⋅ 100 % \varepsilon_{a^1}=|\dfrac{x_3-x_2}{x_3}|\cdot100\% ε a 1 = ∣ x 3 x 3 − x 2 ∣ ⋅ 100%
n 1 2 3 x 0 − 2 0 2 x 1 0 2 0.354249 x 2 2 0.354249 0.828618 f ( x 0 ) − 18 − 2 6 f ( x 1 ) − 2 6 − 1.3725396 f ( x 2 ) 6 − 1.3725396 − 0.460436 a − 1 1.354249 2.182867 b 2 2.250984 2.958255 c 6 − 1.3725396 − 0.460436 x 3 0.354249 0.828618 0.969597 ε a n 464.575131 57.248251 14.539952 \begin{matrix}
n & 1 & 2 & 3 \\
x_0 & -2 & 0 & 2 \\
x_1 & 0 & 2 & 0.354249 \\
x_2 & 2 & 0.354249 & 0.828618 \\
f(x_0) & -18 & -2 & 6 & \\
f(x_1) & -2 & 6 & -1.3725396 \\
f(x_2) & 6 & -1.3725396 & -0.460436 \\
a & -1 & 1.354249 & 2.182867 \\
b & 2 & 2.250984 & 2.958255 \\
c & 6 & -1.3725396 & -0.460436 \\
x_3 & 0.354249 & 0.828618 & 0.969597 \\
\varepsilon_{a^n} & 464.575131 & 57.248251 & 14.539952
\end{matrix} n x 0 x 1 x 2 f ( x 0 ) f ( x 1 ) f ( x 2 ) a b c x 3 ε a n 1 − 2 0 2 − 18 − 2 6 − 1 2 6 0.354249 464.575131 2 0 2 0.354249 − 2 6 − 1.3725396 1.354249 2.250984 − 1.3725396 0.828618 57.248251 3 2 0.354249 0.828618 6 − 1.3725396 − 0.460436 2.182867 2.958255 − 0.460436 0.969597 14.539952
n 4 5 6 x 0 0.354249 0.828618 0.969597 x 1 0.828618 0.969597 1.001174 x 2 0.969597 1.001174 0.999998 f ( x 0 ) − 1.372539 − 0.460436 − 0.089389 f ( x 1 ) − 0.460436 − 0.089389 0.003525 f ( x 2 ) − 0.089389 0.003525 − 0.000006 a 1.152467 1.799389 1.970769 b 2.794410 2.999252 3.000028 c − 0.089389 0.003525 − 0.000006 x 3 1.001174 0.999998 1 ε a n 3.154012 0.117612 0.000204 \begin{matrix}
n & 4 & 5 & 6 \\
x_0 & 0.354249 & 0.828618 & 0.969597 \\
x_1 & 0.828618 & 0.969597 & 1.001174 \\
x_2 & 0.969597 & 1.001174 & 0.999998 \\
f(x_0) & -1.372539 & -0.460436 & -0.089389 \\
f(x_1) & -0.460436 & -0.089389 & 0.003525 \\
f(x_2) & -0.089389 & 0.003525 & -0.000006 \\
a & 1.152467 & 1.799389 & 1.970769\\
b & 2.794410 & 2.999252 & 3.000028 \\
c & -0.089389 & 0.003525 & -0.000006 \\
x_3 & 1.001174 & 0.999998 & 1 \\
\varepsilon_{a^n} & 3.154012 & 0.117612 & 0.000204
\end{matrix} n x 0 x 1 x 2 f ( x 0 ) f ( x 1 ) f ( x 2 ) a b c x 3 ε a n 4 0.354249 0.828618 0.969597 − 1.372539 − 0.460436 − 0.089389 1.152467 2.794410 − 0.089389 1.001174 3.154012 5 0.828618 0.969597 1.001174 − 0.460436 − 0.089389 0.003525 1.799389 2.999252 0.003525 0.999998 0.117612 6 0.969597 1.001174 0.999998 − 0.089389 0.003525 − 0.000006 1.970769 3.000028 − 0.000006 1 0.000204
Approximate root of the equation x 3 − x 2 + 2 x − 2 = 0 x^3-x^2+2x-2=0 x 3 − x 2 + 2 x − 2 = 0 using Muller method is 1 1 1 (After 6 iterations)
Comments