Question #142401
Use Mu ̈ller’s method to determine the real and complex roots of
f (x) = x^3− x^2 + 2x − 2
1
Expert's answer
2020-11-05T13:53:13-0500

Let f(x)=x3x2+2x2f(x)=x^3-x^2+2x-2

Use initial guesses x0=2,x1=0,x2=2x_0=-2, x_1=0, x_2=2

f(x0)=f(2)=18f(x_0)=f(-2)=-18

f(x1)=f(0)=2f(x_1)=f(0)=-2

f(x2)=f(2)=6f(x_2)=f(2)=6

h0=x1x0=0(2)=2h_0=x_1-x_0=0-(-2)=2

h1=x2x1=20=2h_1=x_2-x_1=2-0=2

δ0=f(x1)f(x0)h0=2(18)2=8\delta_0=\dfrac{f(x_1)-f(x_0)}{h_0}=\dfrac{-2-(-18)}{2}=8 δ1=f(x2)f(x1)h1=6(2)2=4\delta_1=\dfrac{f(x_2)-f(x_1)}{h_1}=\dfrac{6-(-2)}{2}=4

a=δ1δ0h1+h0=482+2=1a=\dfrac{\delta_1-\delta_0}{h_1+h_0}=\dfrac{4-8}{2+2}=-1

b=a×h1+δ1=1×2+4=2b=a\times h_1+\delta_1=-1\times2+4=2

c=f(x2)=f(2)=6c=f(x_2)=f(2)=6


x3=x2+2cb±b24acx_3=x_2+\dfrac{-2c}{b\pm\sqrt{b^2-4ac}}

x3=2+2(6)2+224(1)(6)=0.35424869x_3=2+\dfrac{-2(6)}{2+\sqrt{2^2-4(-1)(6)}}=0.35424869

Relative percent error


εa1=x3x2x3100%\varepsilon_{a^1}=|\dfrac{x_3-x_2}{x_3}|\cdot100\%

n123x0202x1020.354249x220.3542490.828618f(x0)1826f(x1)261.3725396f(x2)61.37253960.460436a11.3542492.182867b22.2509842.958255c61.37253960.460436x30.3542490.8286180.969597εan464.57513157.24825114.539952\begin{matrix} n & 1 & 2 & 3 \\ x_0 & -2 & 0 & 2 \\ x_1 & 0 & 2 & 0.354249 \\ x_2 & 2 & 0.354249 & 0.828618 \\ f(x_0) & -18 & -2 & 6 & \\ f(x_1) & -2 & 6 & -1.3725396 \\ f(x_2) & 6 & -1.3725396 & -0.460436 \\ a & -1 & 1.354249 & 2.182867 \\ b & 2 & 2.250984 & 2.958255 \\ c & 6 & -1.3725396 & -0.460436 \\ x_3 & 0.354249 & 0.828618 & 0.969597 \\ \varepsilon_{a^n} & 464.575131 & 57.248251 & 14.539952 \end{matrix}


n456x00.3542490.8286180.969597x10.8286180.9695971.001174x20.9695971.0011740.999998f(x0)1.3725390.4604360.089389f(x1)0.4604360.0893890.003525f(x2)0.0893890.0035250.000006a1.1524671.7993891.970769b2.7944102.9992523.000028c0.0893890.0035250.000006x31.0011740.9999981εan3.1540120.1176120.000204\begin{matrix} n & 4 & 5 & 6 \\ x_0 & 0.354249 & 0.828618 & 0.969597 \\ x_1 & 0.828618 & 0.969597 & 1.001174 \\ x_2 & 0.969597 & 1.001174 & 0.999998 \\ f(x_0) & -1.372539 & -0.460436 & -0.089389 \\ f(x_1) & -0.460436 & -0.089389 & 0.003525 \\ f(x_2) & -0.089389 & 0.003525 & -0.000006 \\ a & 1.152467 & 1.799389 & 1.970769\\ b & 2.794410 & 2.999252 & 3.000028 \\ c & -0.089389 & 0.003525 & -0.000006 \\ x_3 & 1.001174 & 0.999998 & 1 \\ \varepsilon_{a^n} & 3.154012 & 0.117612 & 0.000204 \end{matrix}

Approximate root of the equation x3x2+2x2=0x^3-x^2+2x-2=0 using Muller method is 11 (After 6 iterations)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS