Question #143376
Solve by iteration method:
(i) 1+logx=x
1
Expert's answer
2020-11-10T20:07:16-0500
x=g(x)=1+logxx=g(x)=1+\log x

x0=0.5x_0=0.5

xi+1=g(xi)=1+logxi,i=0,1,2,...x_{i+1}=g(x_i)=1+\log x_i, i=0, 1,2,...

ixig(xi)00.50.6989700010.698970000.8444585420.844458540.9265783330.926578330.9668821440.966882140.9853735450.985373540.9936009060.993600900.9972119870.997211980.9987874980.998787490.9994730990.999473090.99977111100.999771110.99990058110.999900580.99995682120.999956820.99998125130.999981250.99999186140.999991860.99999646150.999996460.99999846160.999998460.99999933170.999999330.99999971180.999999710.99999987190.999999870.99999994200.999999940.99999997210.999999970.99999999220.999999991.00000000231.00000000\def\arraystretch{1.5} \begin{array}{c:c:c} i & x_i & g(x_i) \\ \hline 0 & 0.5 & 0.69897000 \\ 1 & 0.69897000 & 0.84445854 \\ 2 &0.84445854 & 0.92657833 \\ 3 & 0.92657833 & 0.96688214\\ 4 & 0.96688214 & 0.98537354 \\ 5 & 0.98537354 & 0.99360090\\ 6 & 0.99360090 & 0.99721198\\ 7 & 0.99721198 & 0.99878749\\ 8 & 0.99878749 & 0.99947309\\ 9 & 0.99947309 & 0.99977111\\ 10 & 0.99977111 & 0.99990058\\ 11 & 0.99990058 & 0.99995682\\ 12 & 0.99995682 & 0.99998125\\ 13 & 0.99998125 & 0.99999186\\ 14 & 0.99999186 & 0.99999646\\ 15 & 0.99999646 & 0.99999846\\ 16 & 0.99999846 & 0.99999933\\ 17 & 0.99999933 & 0.99999971\\ 18 & 0.99999971 & 0.99999987\\ 19 & 0.99999987 & 0.99999994\\ 20 &0.99999994 & 0.99999997\\ 21 & 0.99999997 & 0.99999999\\ 22 &0.99999999 & 1.00000000\\ \hdashline 23 &1.00000000 & \\ \end{array}

x1.00000000x\approx1.00000000



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS