Let "f(x)=x^4-2x^3+6x^2-2x+5"
Use initial guesses "x_0=-1, x_1=0, x_2=1"
"f(x_0)=f(-1)=16"
"f(x_1)=f(0)=5"
"f(x_2)=f(1)=8"
"h_0=x_1-x_0=0-(-1)=1"
"h_1=x_2-x_1=1-0=1"
"\\delta_0=\\dfrac{f(x_1)-f(x_0)}{h_0}=\\dfrac{5-16}{1}=-11"
"\\delta_1=\\dfrac{f(x_2)-f(x_1)}{h_1}=\\dfrac{8-5}{1}=3"
"a=\\dfrac{\\delta_1-\\delta_0}{h_1+h_0}=\\dfrac{3-(-11)}{1+1}=7"
"b=a\\times h_1+\\delta_1=7\\times1+3=10"
"c=f(x_2)=f(1)=8"
"x_3=x_2+\\dfrac{-2c}{b\\pm\\sqrt{b^2-4ac}}""x_3=1+\\dfrac{-2(8)}{10+\\sqrt{10^2-4(7)(8)}}=""=0.285714+0.795395i"
"x_0=-1, x_1=0, x_2=0.285714+0.795395i"
Calling the function Muller with different parameters yields two complex roots of the equation "x_1\\approx i, x_3\\approx1+2i." Two other roots can be determined as their conjugate pairs "x_2\\approx-i, x_4\\approx1-2i."
"x_2\\approx -i"
"x_4\\approx 1-2i"
Comments
Leave a comment