Let f(x)=2x4+6x2+8
Use initial guesses x0=−1,x1=0,x2=1
f(x0)=f(−1)=16
f(x1)=f(0)=8
f(x2)=f(1)=16
h0=x1−x0=0−(−1)=1
h1=x2−x1=1−0=1
δ0=h0f(x1)−f(x0)=18−16=−8
δ1=h1f(x2)−f(x1)=116−8=8
a=h1+h0δ1−δ0=1+18−(−8)=8
b=a×h1+δ1=8×1+8=16
c=f(x2)=f(1)=16
x3=x2+b±b2−4ac−2c
x3=1+16+162−4(8)(16)−2(16)=i
x0=−1,x1=0,x2=i
Calling the function Muller with different parameters yields two complex roots of the equation x1≈0.5+1.32288i,x3≈−0.5+1.32288i.
Two other roots can be determined as their conjugate pairs x2≈0.5−1.32288i, x4≈−0.5−1.32288i.
x1≈0.5+1.32288i
x2≈0.5−1.32288i
x3≈−0.5+1.32288i
x4≈−0.5−1.32288i
Comments