Answer to Question #142196 in Quantitative Methods for Mehwish

Question #142196
2 Find the root of the equation xex = cosx in the interval (0, 1) using
Regula-Falsi method correct to four decimal places.
1
Expert's answer
2020-11-03T18:30:23-0500

xex=cosxf(x)=xexcosxf(0.5)=0.5e0.5cos0.5=0.0532<0f(0.6)=0.6e0.6cos0.6=0.2679>0By Regula-Falsi methodx1=0.5f(0.6)0.6f(0.5)f(0.6)f(0.5)=0.5165719036f(0.5165719036)<0f(0.6)>0Repeating the processx2=0.6f(0.5165719036)0.5165719036f(0.6)f(0.5165719036)f(0.6)=0.51767881731x=0.5177  (to 4.d.p)\displaystyle xe^x = \cos{x}\\ f(x) = xe^x - \cos{x}\\ f(0.5) = 0.5e^{0.5} - \cos{0.5} = -0.0532 < 0\\ f(0.6) = 0.6e^{0.6} - \cos{0.6} = 0.2679 > 0\\ \textsf{By Regula-Falsi method}\\ x_1 = \frac{0.5 f(0.6) - 0.6f(0.5)}{f(0.6) - f(0.5)} = 0.5165719036 \\ f(0.5165719036) < 0\\ f(0.6) > 0\\ \textsf{Repeating the process}\\ x_2 = \frac{0.6f(0.5165719036 ) - 0.5165719036 f(0.6)}{f(0.5165719036) - f(0.6)} = 0.51767881731\\ \therefore x = 0.5177 \, \, \textsf{(to 4.d.p)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment