xy1−3394306132
The Lagrange interpolation polynomial is
f(x)=(x0−x1)(x0−x2)(x0−x3)(x−x1)(x−x2)(x−x3)y0+(x1−x0)(x1−x2)(x1−x3)(x−x0)(x−x2)(x−x3)y1+(x2−x0)(x2−x1)(x2−x3)(x−x0)(x−x1)(x−x3)y2+(x3−x0)(x3−x1)(x3−x2)(x−x0)(x−x1)(x−x2)y3=
=101(x−3)(x−4)(x−6)+23(x−1)(x−4)(x−6)−5(x−1)(x−3)(x−6)+522(x−1)(x−3)(x−4)=
101(x3−13x2+54x−72)+23(x3−11x2+34x−24)−5(x3−10x2+27x−18)+522(x3−8x2+19x−12)=
=x3−3x2+5x−6 .
Answer: f(x)=x3−3x2+5x−6.
Comments