Question #153456

If y(1) = – 3, y(3) = 9, y(4) = 30, and y(6) = 132, find the four-point

Lagrange interpolation polynomial that takes the same values as the function y at the given points.


1
Expert's answer
2021-01-04T20:19:29-0500

x1346y3930132\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} x & 1 & 3 & 4 & 6 \\ \hline y & -3 & 9 & 30 & 132 \end{array}

The Lagrange interpolation polynomial is

f(x)=(xx1)(xx2)(xx3)(x0x1)(x0x2)(x0x3)y0+(xx0)(xx2)(xx3)(x1x0)(x1x2)(x1x3)y1+(xx0)(xx1)(xx3)(x2x0)(x2x1)(x2x3)y2+(xx0)(xx1)(xx2)(x3x0)(x3x1)(x3x2)y3=f(x)= \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0+ \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1+ \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2+ \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3=\\

=110(x3)(x4)(x6)+32(x1)(x4)(x6)5(x1)(x3)(x6)+225(x1)(x3)(x4)==\frac{1}{10}(x-3)(x-4)(x-6)+\frac{3}{2}(x-1)(x-4)(x-6)-5(x-1)(x-3)(x-6)+\frac{22}{5}(x-1)(x-3)(x-4)=\\

110(x313x2+54x72)+32(x311x2+34x24)5(x310x2+27x18)+225(x38x2+19x12)=\frac{1}{10}(x^3-13x^2+54x-72)+\frac{3}{2}(x^3-11x^2+34x-24)-5(x^3-10x^2+27x-18)+\frac{22}{5}(x^3-8x^2+19x-12)=\\

=x33x2+5x6=x^3-3x^2+5x-6 .


Answer: f(x)=x33x2+5x6.f(x)=x^3-3x^2+5x-6.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS