Question #153496

Given f(0) = – 18, f(1) = 0, f(3) = 0, f(5) = – 248, f(6) = 0, f(9) = 13104; find f(x).


1
Expert's answer
2021-01-12T00:40:38-0500
x0=0y0=18  x1=1y1=0       x2=3y2=0       x3=5y3=248x4=6y4=0       x5=9y5=13104\begin{matrix} x_0=0 & y_0=-18\ \ \\ x_1=1 & y_1=0\ \ \ \ \ \ \ \\ x_2=3 & y_2=0\ \ \ \ \ \ \ \\ x_3=5 & y_3=-248\\ x_4=6 & y_4=0\ \ \ \ \ \ \ \\ x_5=9 & y_5=13104\\ \end{matrix}


The interpolating polynomial is:

L(x)=(xx1)(xx2)(xx3)(xx4)(xx5)(x0x1)(x0x2)(x0x3)(x0x4)(x0x5)×y0L(x)=\dfrac{(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)(x_0-x_4)(x_0-x_5)}\times y_0

+(xx0)(xx2)(xx3)(xx4)(xx5)(x1x0)(x1x2)(x1x3)(x1x4)(x1x5)×y1+\dfrac{(x-x_0)(x-x_2)(x-x_3)(x-x_4)(x-x_5)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)(x_1-x_4)(x_1-x_5)}\times y_1

+(xx0)(xx1)(xx3)(xx4)(xx5)(x2x0)(x2x1)(x2x3)(x2x4)(x2x5)×y2+\dfrac{(x-x_0)(x-x_1)(x-x_3)(x-x_4)(x-x_5)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)(x_2-x_4)(x_2-x_5)}\times y_2


+(xx0)(xx1)(xx2)(xx4)(xx5)(x3x0)(x3x1)(x3x2)(x3x4)(x3x5)×y3+\dfrac{(x-x_0)(x-x_1)(x-x_2)(x-x_4)(x-x_5)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)(x_3-x_4)(x_3-x_5)}\times y_3


+(xx0)(xx1)(xx2)(xx3)(xx5)(x4x0)(x4x1)(x4x2)(x4x3)(x4x5)×y4+\dfrac{(x-x_0)(x-x_1)(x-x_2)(x-x_3)(x-x_5)}{(x_4-x_0)(x_4-x_1)(x_4-x_2)(x_4-x_3)(x_4-x_5)}\times y_4

+(xx0)(xx1)(xx2)(xx3)(xx4)(x5x0)(x5x1)(x5x2)(x5x3)(x5x4)×y5+\dfrac{(x-x_0)(x-x_1)(x-x_2)(x-x_3)(x-x_4)}{(x_5-x_0)(x_5-x_1)(x_5-x_2)(x_5-x_3)(x_5-x_4)}\times y_5



L(x)=(x1)(x3)(x5)(x6)(x9)(01)(03)(05)(06)(09)×(18)L(x)=\dfrac{(x-1)(x-3)(x-5)(x-6)(x-9)}{(0-1)(0-3)(0-5)(0-6)(0-9)}\times (-18)

+0+0

+0+0

+(x0)(x1)(x3)(x6)(x9)(50)(51)(53)(56)(59)×(248)+\dfrac{(x-0)(x-1)(x-3)(x-6)(x-9)}{(5-0)(5-1)(5-3)(5-6)(5-9)}\times (-248)

+0+0

+(x0)(x1)(x3)(x5)(x6)(90)(91)(93)(95)(96)×13104+\dfrac{(x-0)(x-1)(x-3)(x-5)(x-6)}{(9-0)(9-1)(9-3)(9-5)(9-6)}\times 13104

L(x)=(x2+x+1)(x1)(x3)(x6)L(x)=(x^2+x+1)(x-1)(x-3)(x-6)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS