x:y:4−437839327121053
By Lagrange’s interpolation formula we have:
f(x)=(x0−x1)(x0−x2)(x0−x3)(x−x1)(x−x2)(x−x3)y0+(x1−x0)(x1−x2)(x1−x3)(x−x0)(x−x2)(x−x3)y1+(x2−x0)(x2−x1)(x2−x3)(x−x0)(x−x1)(x−x3)y2+(x3−x0)(x3−x1)(x3−x2)(x−x0)(x−x1)(x−x2)y3=(4−7)(4−9)(4−12)(x−7)(x−9)(x−12)(−43)+(7−4)(7−9)(7−12)(x−4)(x−9)(x−12)83+(9−4)(9−7)(9−12)(x−4)(x−7)(x−12)327+(12−4)(12−7)(12−9)(x−4)(x−7)(x−9)1053=12043(x3−28x2+255x−756)+3083(x3−25x2+192x−432)−10109(x3−23x2+160x−336)+40351(x3−20x2+127x−252)=x3−4x2−7x−15
Answer: f(x)=x3−4x2−7x−15.
Comments