Question #153481

Find the equation of the cubic curve that passes through the points (4, – 43), (7, 83), (9, 327) and (12, 1053).


1
Expert's answer
2021-01-08T13:54:41-0500

x:47912y:43833271053\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} x: & 4 & 7 & 9 & 12 \\ \hline y: & -43 & 83 & 327 & 1053 \\ \hdashline \end{array}

By Lagrange’s interpolation formula we have:

f(x)=(xx1)(xx2)(xx3)(x0x1)(x0x2)(x0x3)y0+(xx0)(xx2)(xx3)(x1x0)(x1x2)(x1x3)y1+(xx0)(xx1)(xx3)(x2x0)(x2x1)(x2x3)y2+(xx0)(xx1)(xx2)(x3x0)(x3x1)(x3x2)y3=(x7)(x9)(x12)(47)(49)(412)(43)+(x4)(x9)(x12)(74)(79)(712)83+(x4)(x7)(x12)(94)(97)(912)327+(x4)(x7)(x9)(124)(127)(129)1053=43120(x328x2+255x756)+8330(x325x2+192x432)10910(x323x2+160x336)+35140(x320x2+127x252)=x34x27x15f(x)= \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0+ \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1+ \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2+ \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3= \frac{(x-7)(x-9)(x-12)}{(4-7)(4-9)(4-12)}(-43)+ \frac{(x-4)(x-9)(x-12)}{(7-4)(7-9)(7-12)} 83+ \frac{(x-4)(x-7)(x-12)}{(9-4)(9-7)(9-12)}327+ \frac{(x-4)(x-7)(x-9)}{(12-4)(12-7)(12-9)} 1053=\frac{43}{120}(x^3-28x^2+255x-756) +\frac{83}{30}(x^3-25x^2+192x-432)-\frac{109}{10}(x^3-23x^2+160x-336)+\frac{351}{40}(x^3-20x^2+127x-252)=x^3-4x^2-7x-15


Answer: f(x)=x34x27x15.f(x)=x^3-4x^2-7x-15.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS