Question #153497

Determine by Lagrange’s formula, the percentage number of criminals under 35 years:

Age % number of criminals

under 25 years 52

under 30 years 67.3

under 40 years 84.1

under 50 years 94.4


1
Expert's answer
2021-01-12T01:15:30-0500

x25304050y5267.384.194.4\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} x & 25 & 30 & 40 & 50\\ \hline y& 52 & 67.3 & 84.1 & 94.4 \\ \hdashline \end{array}, where xx denotes age and yy denotes % of criminals.


By Lagrange’s interpolation formula we have:

f(x)=(xx1)(xx2)(xx3)(x0x1)(x0x2)(x0x3)y0+(xx0)(xx2)(xx3)(x1x0)(x1x2)(x1x3)y1+(xx0)(xx1)(xx3)(x2x0)(x2x1)(x2x3)y2+(xx0)(xx1)(xx2)(x3x0)(x3x1)(x3x2)y3f(x)= \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0+ \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1+ \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2+ \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3


We put x=35:x=35:

y(35)=f(35)=(3530)(3540)(3550)(2530)(2540)(2550)52+(3525)(3540)(3550)(3025)(3040)(3050)67.3+(3525)(3530)(3550)(4025)(4030)(4050)84.1+(3525)(3530)(3540)(5025)(5030)(5040)94.4=1552+3467.3+1284.112094.4=77.405y(35)=f(35)= \frac{(35-30)(35-40)(35-50)}{(25-30)(25-40)(25-50)}52+ \frac{(35-25)(35-40)(35-50)}{(30-25)(30-40)(30-50)} 67.3+ \frac{(35-25)(35-30)(35-50)}{(40-25)(40-30)(40-50)}84.1+ \frac{(35-25)(35-30)(35-40)}{(50-25)(50-30)(50-40)} 94.4=-\tfrac{1}{5}\cdot 52+\tfrac{3}{4}\cdot 67.3+\tfrac{1}{2}\cdot 84.1-\tfrac{1}{20}\cdot 94.4=77.405



Answer: the percentage number of criminals under 35 years is 77.405.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS