(a) Let α : R
3 −→ R
3 be a linear transformation satisfying
α(1, 1, 0) = (1, 2, −1), α(1, 0, −1) = (0, 1, 1) and α(0, −1, 1) = (3, 3, 3).
i. Express (1, 0, 0) as a linear combination of (1, 2, −1), (0, 1, 1) and (3, 3, 3).
ii. Hence find v ∈ R
3
such that α(v) = (1, 0, 0).
(b) Let the map β : R
3 −→ R
3 be defined by
β((a, b, c)) = (a + b + c, −a − c, b)
for any (a, b, c) ∈ R
3
.
i. Show that β is a linear transformation.
ii. Find the kernel of β.