Question #124666
(b) If
A =


4 4 −2
−1 0 1
3 6 −1

 ,
show that A2 = A + kI for some constant k, where I is the unit matrix of order 3. Hence
find the inverse matrix A−1
. [
1
Expert's answer
2020-07-06T17:20:58-0400

Given, A=[442101361]A =\begin{bmatrix} 4 & 4 & -2 \\ -1 & 0 & 1\\ 3 & 6 & -1 \end{bmatrix}.


A2=[442101361][442101361]       =[642121361]       =[442101361]+[200020002]       =A+2I.A^{2}=\begin{bmatrix} 4 & 4 & -2 \\ -1 & 0 & 1\\ 3 & 6 & -1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 4 & -2 \\ -1 & 0 & 1\\ 3 & 6 & -1 \end{bmatrix}\\~\\~~~~~~ = \begin{bmatrix} 6 & 4 & -2 \\ -1 & 2 & 1\\ 3 & 6 & 1 \end{bmatrix}\\~\\ ~~~~~~= \begin{bmatrix} 4 & 4 & -2 \\ -1 & 0 & 1\\ 3 & 6 & -1 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0\\ 0 & 0 & 2 \end{bmatrix}\\~\\~~~~~~ = A + 2I.


Therefore, A2=A+kIA^{2}=A+kI for k=2k=2.


Multiplying, A2=A+2IA^{2}=A+2I by A1A^{-1}, we get


A=I+2A1 A1=12(AI)         =12[342111362]A = I + 2A^{-1}\\~\\ A^{-1} = \frac{1}{2}(A-I)\\~\\ ~~~~~~~~=\dfrac{1}{2}\begin{bmatrix} 3 & 4 & 2\\ -1 & -1 & 1 \\3 & 6 & -2\end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS