Question #125836
a) Check whether the matrices A and B are diagonalisable. Diagonalise those
matrices which are diagonalisable.
A = 1 0 0 B = 2 0 0
1 5 -3 -2 2 -1
2 8 -5 -1 0 1
b) Find inverse of the matrix B in part a) of the question by using
Cayley-Hamiltion theorem.

c) Find the inverse of the matrix A in part a) of the question by fnding its
adjoint.
1
Expert's answer
2020-07-13T19:50:08-0400

a) Find eigenvalues from the characteristic polynomial of A:

1λ0015λ3285λ\begin{vmatrix} 1-\lambda & 0 & 0 \\ 1 & 5-\lambda & -3 \\ 2 & 8 & -5-\lambda \end{vmatrix} =λ3+λ2+λ1=(λ1)×(λ21)=(λ1)×(λ1)×(λ+1)=−λ^3+λ^2+λ−1=−(λ−1)×(λ^2−1)=−(λ−1)×(λ−1)×(λ+1)

Hence, Eigenvalues are 1, 1, -1.

Corresponding to eigenvalue 1, G.M. = 3ρ(AI)3 - \rho(A-I)

= 3ρ[000143286]=31=23 - \rho \begin{bmatrix} 0 & 0 & 0 \\ 1 & 4 & -3 \\ 2 & 8 & -6 \end{bmatrix} = 3-1 = 2 .

Corresponding to eigenvalue -1, G.M. = 1.

Hence, A matrix is diagonlizable.


Characteristic polynomial of B is

2λ0022λ1101λ=0\begin{vmatrix} 2-\lambda & 0 & 0 \\ -2 & 2-\lambda & -1 \\ -1 & 0 & 1-\lambda \end{vmatrix}=0

    λ3+5λ28λ+4=0=(λ1)(λ24λ+4)=(λ1)(λ2)(λ2)=0\implies -\lambda^3+5 \lambda^2-8\lambda+4 = 0 \\ =-(\lambda-1)(\lambda^2-4\lambda+4)=-(\lambda-1)(\lambda-2)(\lambda-2) = 0

Hence, eigenvalues of B are 1,2,2.

Corresponding to eigenvalue 2, G.M. = 3ρ(A2I)=3ρ[000201101]3-\rho(A-2I) = 3 - \rho \begin{bmatrix} 0 & 0 & 0 \\ -2 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix}

= 3 - 1 = 2.

Hence, B matrix is not diagonalizable.


b) According to Cayley-Hamilton theorem, Ch(B)=0Ch(B)=0 .

B3+5B28B+4I=0    4I=B35B2+8B    B1=14[B25B+8I]-B^3+5 B^2-8B+4I = 0 \\ \implies 4I = B^3 - 5B^2+8B \\ \implies B^{-1} = \frac{1}{4} [B^2-5B+8I]

So, 4B1=[200221101][200221101]5[200221101]+8[100010001]4 B^{-1} = \begin{bmatrix} 2 & 0 & 0 \\ -2 & 2 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ -2 & 2 & -1 \\ -1 & 0 & 1 \end{bmatrix} - 5 \begin{bmatrix} 2 & 0 & 0 \\ -2 & 2 & -1 \\ -1 & 0 & 1 \end{bmatrix} + 8 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

    B1=[12001412121201]\implies B^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{-1}{2} \\ \frac{1}{2} & 0 & 1 \end{bmatrix} .


c) A=25+24=1|A| = -25+24 = -1 ,

Cofactors of A are C11=2,C12=1,C13=2,C21=0,C22=5,C23=8,C31=0,C32=3,C33=5C_{11} = -2, C_{12} =-1, C_{13} = -2, C_{21} = 0, C_{22} = -5, \\ C_{23} =-8, C_{31} = 0, C_{32} = 3, C_{33} = 5

adj(A)=[112058035]T=[100153285]adj(A) = \begin{bmatrix} -1 & -1 & -2 \\ 0 & -5 & -8 \\ 0 & 3 & 5 \end{bmatrix}^T = \begin{bmatrix} -1 & 0 & 0 \\ -1 & -5 & 3 \\ -2 & -8 & 5 \end{bmatrix}

A1=1Aadj(A)=[100153285]A^{-1} =\frac{1}{|A|}adj(A) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 5 & - 3 \\ 2 & 8 & -5 \end{bmatrix} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS