a) Find eigenvalues from the characteristic polynomial of A:
"\\begin{vmatrix} 1-\\lambda & 0 & 0 \\\\ 1 & 5-\\lambda & -3 \\\\ 2 & 8 & -5-\\lambda \\end{vmatrix}" "=\u2212\u03bb^3+\u03bb^2+\u03bb\u22121=\u2212(\u03bb\u22121)\u00d7(\u03bb^2\u22121)=\u2212(\u03bb\u22121)\u00d7(\u03bb\u22121)\u00d7(\u03bb+1)"
Hence, Eigenvalues are 1, 1, -1.
Corresponding to eigenvalue 1, G.M. = "3 - \\rho(A-I)"
= "3 - \\rho \\begin{bmatrix} 0 & 0 & 0 \\\\ 1 & 4 & -3 \\\\ 2 & 8 & -6 \\end{bmatrix} = 3-1 = 2" .
Corresponding to eigenvalue -1, G.M. = 1.
Hence, A matrix is diagonlizable.
Characteristic polynomial of B is
"\\begin{vmatrix} 2-\\lambda & 0 & 0 \\\\ -2 & 2-\\lambda & -1 \\\\ -1 & 0 & 1-\\lambda \\end{vmatrix}=0"
"\\implies -\\lambda^3+5 \\lambda^2-8\\lambda+4 = 0 \\\\\n=-(\\lambda-1)(\\lambda^2-4\\lambda+4)=-(\\lambda-1)(\\lambda-2)(\\lambda-2) = 0"
Hence, eigenvalues of B are 1,2,2.
Corresponding to eigenvalue 2, G.M. = "3-\\rho(A-2I) = 3 - \\rho \\begin{bmatrix} 0 & 0 & 0 \\\\ -2 & 0 & -1 \\\\ -1 & 0 & -1 \\end{bmatrix}"
= 3 - 1 = 2.
Hence, B matrix is not diagonalizable.
b) According to Cayley-Hamilton theorem, "Ch(B)=0" .
"-B^3+5 B^2-8B+4I = 0 \\\\\n\\implies 4I = B^3 - 5B^2+8B \\\\\n\\implies B^{-1} = \\frac{1}{4} [B^2-5B+8I]"
So, "4 B^{-1} = \\begin{bmatrix} 2 & 0 & 0 \\\\ -2 & 2 & -1 \\\\ -1 & 0 & 1 \\end{bmatrix} \\begin{bmatrix} 2 & 0 & 0 \\\\ -2 & 2 & -1 \\\\ -1 & 0 & 1 \\end{bmatrix} - 5 \\begin{bmatrix} 2 & 0 & 0 \\\\ -2 & 2 & -1 \\\\ -1 & 0 & 1 \\end{bmatrix} + 8 \\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & 0 & 1 \\end{bmatrix}"
"\\implies B^{-1} = \\begin{bmatrix} \\frac{1}{2} & 0 & 0 \\\\ \\frac{1}{4}\t& \\frac{1}{2}\t& \\frac{-1}{2} \\\\ \n\\frac{1}{2}\t & 0 & \t1 \\end{bmatrix}" .
c) "|A| = -25+24 = -1" ,
Cofactors of A are "C_{11} = -2, C_{12} =-1, C_{13} = -2, C_{21} = 0, C_{22} = -5, \\\\\nC_{23} =-8, C_{31} = 0, C_{32} = 3, C_{33} = 5"
"adj(A) = \\begin{bmatrix} -1 & -1 & -2 \\\\ 0\t& -5\t& -8 \\\\ \n0 & 3 & \t5 \\end{bmatrix}^T = \\begin{bmatrix} -1 & 0 & 0 \\\\ -1\t& -5\t& 3 \\\\ \n-2\t & -8 & \t5 \\end{bmatrix}"
"A^{-1} =\\frac{1}{|A|}adj(A) = \\begin{bmatrix} 1 & 0 & 0 \\\\ 1\t& 5\t& - 3 \\\\ 2\t & 8 & \t-5 \\end{bmatrix}" .
Comments
Leave a comment