(a) i.
"(1, 0, 0)=c_1(1, 2, \u22121)+c_2(0, 1, 1)+c_3(3, 3, 3)""c_1+3c_3=1""2c_1+c_2+3c_3=0""-c_1+c_2+3c_3=0"
"c_1+3c_3=1""3c_1=0""-c_1+c_2+3c_3=0"
"c_1=0""c_2=-1""c_3={1\\over 3}"
"(1, 0, 0)=(0)(1, 2, \u22121)+(-1)(0, 1, 1)+({1\\over 3})(3, 3, 3)"
ii.
"\\text{v}=(0)(1, 1, 0)+(-1)(1, 0, -1)+({1\\over 3})(0, -1, 1)""\\text{v}=(-1, -{1\\over 3}, {4\\over 3})"
(b) i.
Let "\\text{x}=(a_1, b_1,c_1), \\text{y}=(a_2, b_2,c_2), a_1, b_1,c_1,a_2, b_2,c_2\\in \\R"
"=(a_1+b_1+c_1, -a_1-c_1,b_1)+(a_2+b_2+c_2,-a_2-c_2,b_2)="
"=\\beta((a_1, b_1, c_1))+\\beta((a_2, b_2, c_2))=\\beta(\\text{x})+\\beta(\\text{y})"
Let "r\\in \\R"
"=(ra_1+rb_1+rc_1, -ra_1-rc_1,rb_1)="
"=r(a_1+b_1+c_1, -a_1-c_1,b_1)=r\\beta(\\text{x})"
Therefore "\\beta" is a linear transformation.
ii.
System of linear equations associated to the implicit equations of the kernel, resulting from equalling to zero the components of the linear transformation formula.
The system has infinitely many solutions:
"\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n -1 & 0 & -1 \\\\\n 0 & 1 & 0\n\\end{pmatrix}\\xmapsto{R_2=R_2+R_1}\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n 0 & 1 & 0 \\\\\n 0 & 1 & 0\n\\end{pmatrix}"
"\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n 0 & 1 & 0 \\\\\n 0 & 1 & 0\n\\end{pmatrix}\\xmapsto{R_3=R_3-R_2}\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n 0 & 1 & 0 \\\\\n 0 & 0 & 0\n\\end{pmatrix}"
"\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n 0 & 1 & 0 \\\\\n 0 & 0 & 0\n\\end{pmatrix}\\xmapsto{R_1=R_1-R_2}\\begin{pmatrix}\n 1 & 0 & 1 \\\\\n 0 & 1 & 0 \\\\\n 0 & 0 & 0\n\\end{pmatrix}"
The solution can be written in the vector form:
Therefore the kernel of "\\beta" has a basis formed by the set
Comments
Leave a comment