Answer to Question #123761 in Linear Algebra for Felix Coleman

Question #123761
(a) Let α : R
3 −→ R
3 be a linear transformation satisfying
α(1, 1, 0) = (1, 2, −1), α(1, 0, −1) = (0, 1, 1) and α(0, −1, 1) = (3, 3, 3).
i. Express (1, 0, 0) as a linear combination of (1, 2, −1), (0, 1, 1) and (3, 3, 3).

ii. Hence find v ∈ R
3
such that α(v) = (1, 0, 0).
(b) Let the map β : R
3 −→ R
3 be defined by
β((a, b, c)) = (a + b + c, −a − c, b)
for any (a, b, c) ∈ R
3
.
i. Show that β is a linear transformation.
ii. Find the kernel of β.
1
Expert's answer
2020-06-25T18:40:05-0400

(a) i.

"(1, 0, 0)=c_1(1, 2, \u22121)+c_2(0, 1, 1)+c_3(3, 3, 3)"

"c_1+3c_3=1""2c_1+c_2+3c_3=0""-c_1+c_2+3c_3=0"

"c_1+3c_3=1""3c_1=0""-c_1+c_2+3c_3=0"

"c_1=0""c_2=-1""c_3={1\\over 3}"

"(1, 0, 0)=(0)(1, 2, \u22121)+(-1)(0, 1, 1)+({1\\over 3})(3, 3, 3)"

ii.

"\\text{v}=(0)(1, 1, 0)+(-1)(1, 0, -1)+({1\\over 3})(0, -1, 1)"

"\\text{v}=(-1, -{1\\over 3}, {4\\over 3})"

(b) i.


"\u03b2((a, b, c)) = (a + b + c, \u2212a \u2212 c, b)"

Let "\\text{x}=(a_1, b_1,c_1), \\text{y}=(a_2, b_2,c_2), a_1, b_1,c_1,a_2, b_2,c_2\\in \\R"



"\\beta(\\text{x}+\\text{y})=\\beta((a_1, b_1,c_1)+(a_2, b_2,c_2))="


"=\\beta((a_1+a_2, b_1+b_2,c_1+c_2)="


"=(a_1+a_2+b_1+b_2+c_1+c_2, -(a_1+a_2)-(c_1+c_2), b_1+b_2)="

"=(a_1+b_1+c_1, -a_1-c_1,b_1)+(a_2+b_2+c_2,-a_2-c_2,b_2)="

"=\\beta((a_1, b_1, c_1))+\\beta((a_2, b_2, c_2))=\\beta(\\text{x})+\\beta(\\text{y})"

Let "r\\in \\R"


"\\beta(r\\text{x})=\\beta(r(a_1, b_1,c_1))=\\beta((ra_1, rb_1,rc_1))="

"=(ra_1+rb_1+rc_1, -ra_1-rc_1,rb_1)="

"=r(a_1+b_1+c_1, -a_1-c_1,b_1)=r\\beta(\\text{x})"

Therefore "\\beta" is a linear transformation.  


ii.

System of linear equations associated to the implicit equations of the kernel, resulting from equalling to zero the components of the linear transformation formula.


"a+b+c=0""-a-c=0""b=0"

The system has infinitely many solutions:


"a=-c""b=0""c=arbitrary"


"A=\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n -1 & 0 & -1 \\\\\n 0 & 1 & 0\n\\end{pmatrix}"

"\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n -1 & 0 & -1 \\\\\n 0 & 1 & 0\n\\end{pmatrix}\\xmapsto{R_2=R_2+R_1}\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n 0 & 1 & 0 \\\\\n 0 & 1 & 0\n\\end{pmatrix}"

"\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n 0 & 1 & 0 \\\\\n 0 & 1 & 0\n\\end{pmatrix}\\xmapsto{R_3=R_3-R_2}\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n 0 & 1 & 0 \\\\\n 0 & 0 & 0\n\\end{pmatrix}"

"\\begin{pmatrix}\n 1 & 1 & 1 \\\\\n 0 & 1 & 0 \\\\\n 0 & 0 & 0\n\\end{pmatrix}\\xmapsto{R_1=R_1-R_2}\\begin{pmatrix}\n 1 & 0 & 1 \\\\\n 0 & 1 & 0 \\\\\n 0 & 0 & 0\n\\end{pmatrix}"

The solution can be written in the vector form:


"\\begin{pmatrix}\n a \\\\\n b \\\\\nc\n\\end{pmatrix}=\\begin{pmatrix}\n -1 \\\\\n 0 \\\\\n1\n\\end{pmatrix}c"

Therefore the kernel of "\\beta" has a basis formed by the set


"\\bigg\\{\\begin{pmatrix}\n -1 \\\\\n 0 \\\\\n1\n\\end{pmatrix}\\bigg\\}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS