Question #123761
(a) Let α : R
3 −→ R
3 be a linear transformation satisfying
α(1, 1, 0) = (1, 2, −1), α(1, 0, −1) = (0, 1, 1) and α(0, −1, 1) = (3, 3, 3).
i. Express (1, 0, 0) as a linear combination of (1, 2, −1), (0, 1, 1) and (3, 3, 3).

ii. Hence find v ∈ R
3
such that α(v) = (1, 0, 0).
(b) Let the map β : R
3 −→ R
3 be defined by
β((a, b, c)) = (a + b + c, −a − c, b)
for any (a, b, c) ∈ R
3
.
i. Show that β is a linear transformation.
ii. Find the kernel of β.
1
Expert's answer
2020-06-25T18:40:05-0400

(a) i.

(1,0,0)=c1(1,2,1)+c2(0,1,1)+c3(3,3,3)(1, 0, 0)=c_1(1, 2, −1)+c_2(0, 1, 1)+c_3(3, 3, 3)

c1+3c3=1c_1+3c_3=12c1+c2+3c3=02c_1+c_2+3c_3=0c1+c2+3c3=0-c_1+c_2+3c_3=0

c1+3c3=1c_1+3c_3=13c1=03c_1=0c1+c2+3c3=0-c_1+c_2+3c_3=0

c1=0c_1=0c2=1c_2=-1c3=13c_3={1\over 3}

(1,0,0)=(0)(1,2,1)+(1)(0,1,1)+(13)(3,3,3)(1, 0, 0)=(0)(1, 2, −1)+(-1)(0, 1, 1)+({1\over 3})(3, 3, 3)

ii.

v=(0)(1,1,0)+(1)(1,0,1)+(13)(0,1,1)\text{v}=(0)(1, 1, 0)+(-1)(1, 0, -1)+({1\over 3})(0, -1, 1)

v=(1,13,43)\text{v}=(-1, -{1\over 3}, {4\over 3})

(b) i.


β((a,b,c))=(a+b+c,ac,b)β((a, b, c)) = (a + b + c, −a − c, b)

Let x=(a1,b1,c1),y=(a2,b2,c2),a1,b1,c1,a2,b2,c2R\text{x}=(a_1, b_1,c_1), \text{y}=(a_2, b_2,c_2), a_1, b_1,c_1,a_2, b_2,c_2\in \R



β(x+y)=β((a1,b1,c1)+(a2,b2,c2))=\beta(\text{x}+\text{y})=\beta((a_1, b_1,c_1)+(a_2, b_2,c_2))=


=β((a1+a2,b1+b2,c1+c2)==\beta((a_1+a_2, b_1+b_2,c_1+c_2)=


=(a1+a2+b1+b2+c1+c2,(a1+a2)(c1+c2),b1+b2)==(a_1+a_2+b_1+b_2+c_1+c_2, -(a_1+a_2)-(c_1+c_2), b_1+b_2)=

=(a1+b1+c1,a1c1,b1)+(a2+b2+c2,a2c2,b2)==(a_1+b_1+c_1, -a_1-c_1,b_1)+(a_2+b_2+c_2,-a_2-c_2,b_2)=

=β((a1,b1,c1))+β((a2,b2,c2))=β(x)+β(y)=\beta((a_1, b_1, c_1))+\beta((a_2, b_2, c_2))=\beta(\text{x})+\beta(\text{y})

Let rRr\in \R


β(rx)=β(r(a1,b1,c1))=β((ra1,rb1,rc1))=\beta(r\text{x})=\beta(r(a_1, b_1,c_1))=\beta((ra_1, rb_1,rc_1))=

=(ra1+rb1+rc1,ra1rc1,rb1)==(ra_1+rb_1+rc_1, -ra_1-rc_1,rb_1)=

=r(a1+b1+c1,a1c1,b1)=rβ(x)=r(a_1+b_1+c_1, -a_1-c_1,b_1)=r\beta(\text{x})

Therefore β\beta is a linear transformation.  


ii.

System of linear equations associated to the implicit equations of the kernel, resulting from equalling to zero the components of the linear transformation formula.


a+b+c=0a+b+c=0ac=0-a-c=0b=0b=0

The system has infinitely many solutions:


a=ca=-cb=0b=0c=arbitraryc=arbitrary


A=(111101010)A=\begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}

(111101010)R2=R2+R1(111010010)\begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}\xmapsto{R_2=R_2+R_1}\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}

(111010010)R3=R3R2(111010000)\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}\xmapsto{R_3=R_3-R_2}\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}

(111010000)R1=R1R2(101010000)\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}\xmapsto{R_1=R_1-R_2}\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}

The solution can be written in the vector form:


(abc)=(101)c\begin{pmatrix} a \\ b \\ c \end{pmatrix}=\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}c

Therefore the kernel of β\beta has a basis formed by the set


{(101)}\bigg\{\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}\bigg\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS