Question #122096
Obtain all the basic solution of the system of linear equations
1
Expert's answer
2020-06-16T19:14:55-0400

As per the given question,

Let there are m linear equation which has n variables,

{a11x1+a12x2.........+a1nxn=b1a21x1+a21x2.........+a2nxn=b2a31x1+a32x3.........+a3nxn=b3.........an11+an2x2.........+annxn=bn\begin{cases} a_{11}x_1+a_{12}x_2.........+a_{1n}x_n=b_1 \\ a_{21}x_1+a_{21}x_2.........+a_{2n}x_n=b_2 \\ a_{31}x_1+a_{32}x_3.........+a_{3n}x_n=b_3 \\. ..\\ ...\\. ..\\ a_{n_1 1}+a_{n2}x_2.........+a_{nn}x_n=b_n \\ \end{cases}


Let it is Ax=b

it have the basic feasible solution if,

Ax=b;x0Ax=b ; x \geq0

The Simplex Method uses the pivot procedure to move from one BFS to an “adjacent” BFSwith an equal or better objective function value.

Pivot Procedure:

  1. Choose a pivot element aija_{ij}
  2. Divide row i of the augmented matrix [Ab][A|b]  by aija_{ij}

[...aij...ail........................akj...akl...][...1...ailaij........................akj...akl...]\begin{bmatrix} ...& a_{ij}&... & a_{il}&... \\ ...& ...&... &...&...\\ ...&...a_{kj}&...&a_{kl}&...\\ \end{bmatrix}\rightarrow \begin{bmatrix} ...& 1&... & \frac{a_{il}}{a_{ij}}&... \\ ...& ...&... &...&...\\ ...&...a_{kj}&...&a_{kl}&...\\ \end{bmatrix}


3.For each row k(other than row i), add akjx−a_{kj}x row i to row k.

The element in row k, column l becomes akj×ail+akl−a_{kj}×a_il+a_kl

[...1...ailaij........................akj...akl...][...1...ailaij........................0...aklakjailaij...]\begin{bmatrix} ...& 1&... & \frac{a_{il}}{a_{ij}}&... \\ ...& ...&... &...&...\\ ...&...a_{kj}&...&a_{kl}&...\\ \end{bmatrix} \rightarrow \begin{bmatrix} ...& 1&... & \frac{a_{il}}{a_{ij}}&... \\ ...& ...&... &...&...\\ ...&...0&...&a_{kl}-\frac{a_{kj}a_{il}}{a_{ij}}&...\\ \end{bmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS