As per the given question,
Let there are m linear equation which has n variables,
⎩⎨⎧a11x1+a12x2.........+a1nxn=b1a21x1+a21x2.........+a2nxn=b2a31x1+a32x3.........+a3nxn=b3.........an11+an2x2.........+annxn=bn
Let it is Ax=b
it have the basic feasible solution if,
Ax=b;x≥0
The Simplex Method uses the pivot procedure to move from one BFS to an “adjacent” BFSwith an equal or better objective function value.
Pivot Procedure:
- Choose a pivot element aij
- Divide row i of the augmented matrix [A∣b] by aij
⎣⎡.........aij......akj.........ail...akl.........⎦⎤→⎣⎡.........1......akj.........aijail...akl.........⎦⎤
3.For each row k(other than row i), add −akjx row i to row k.
The element in row k, column l becomes −akj×ail+akl
⎣⎡.........1......akj.........aijail...akl.........⎦⎤→⎣⎡.........1......0.........aijail...akl−aijakjail.........⎦⎤
Comments