Question #121536
Define T in L.F3/ by
T.z1; z2; z3/ D .2z2; 0; 5z3/:
Find all eigenvalues and eigenvectors of T.
1
Expert's answer
2020-06-16T13:57:56-0400

We know that (1,0,0),(0,1,0),(0,0,1)(1,0,0),(0,1,0),(0,0,1) is the standard basis of R3R^3 .

Given T(z1,z2,z3)=(2z2,0,5z3)T(z_1,z_2,z_3) = ( 2z_2, 0, 5z_3) .

Now, T(1,0,0)=(0,0,0)T(1,0,0) =(0,0,0) , T(0,1,0)=(2,0,0)T(0,1,0) =(2,0,0) and T(0,0,1)=(0,0,5)T(0,0,1)=(0,0,5) .

So, Matrix T=[020000005]T = \begin{bmatrix} 0 & 2 &0\\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix} .

Since, T is upper-triangular Matrix, so eigen-values of T are 0,0,50,0,5 .

Eigenvector of T with respect to eigen-value 0 :

[T0I]X=O    [020000005][x1x2x3]=[000][T -0I]X = O \implies \begin{bmatrix} 0 & 2 &0\\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

    x2=0,x3=0\implies x_2 = 0, x_3 = 0 and let x1=kx_1 = k

So, eigenvector is [1 0 0]t[ 1 \ 0 \ 0 ]^t .

Eigenvalue 0 has arithmetic multiplicity 2, but rank of T is 2, so geometric multiplicity corresponding to 0 is =nρ(T)=32=1= n - \rho(T ) = 3- 2 = 1. So, corresponding to eigenvalue 0, only one eigenvector exists and calculated above.

Eigenvector of T with respect to eigen-value 5 :

[T5I]X=O    [520050000][x1x2x3]=[000][T -5I]X = O \implies \begin{bmatrix} -5 & 2 &0\\ 0 & -5 & 0 \\ 0 & 0 & 0\end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

    x1=0,x2=0\implies x_1 = 0, x_2 = 0 and let x3=kx_3 = k

So, eigenvector is [0 0 1]t[ 0 \ 0 \ 1 ]^t .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS