Let us consider "T(x_1+x_2,y_1+y_2,z_1+z_2)." It should be equal to "T(x_1,y_1,z_1) + T(x_2,y_2,z_2)" .
"T(x_1+x_2,y_1+y_2,z_1+z_2) = \\big(2(x_1+x_2)-4(y_1+y_2) + 3(z_1+z_2)+b, 6c(x_1+x_2)^2(y_1+y_2)(z_1+z_2)\\big)."
"T(x_1,y_1,z_1) + T(x_2,y_2,z_2) = (2x_1-4y_1+3z_1+b,6cx_1^2y_1z_1) + (2x_2-4y_2+3z_2+b,6cx_2^2y_2z_2 ) = \\big(2(x_1+x_2)-4(y_1+y_2) + 3(z_1+z_2)+2b, 6c(x_1^2y_1z_1+x_2^2y_2z_2)\\big)."
Therefore, "2(x_1+x_2)-4(y_1+y_2) + 3(z_1+z_2)+b = 2(x_1+x_2)-4(y_1+y_2) + 3(z_1+z_2)+2b" for every "x_1,x_2,y_1,y_2,z_1,z_2\\in\\R." It is true if and only if "2b=b \\; \\Rightarrow b = 0."
Also it should be true that "6c(x_1+x_2)^2(y_1+y_2)(z_1+z_2) = 6c(x_1^2y_1z_1+x_2^2y_2z_2)" for every "x_1,x_2,y_1,y_2,z_1,z_2\\in\\R." Let, for example, "x_1=y_1=z_1 = 1, \\; x_2=y_1=z_1=2" , therefore
"6c\\cdot81= 6c\\cdot65 \\Rightarrow c = 0." So "c" can be only equal to 0.
So we conclude that if T is linear, b=0 and c = 0. Now we should prove that for "b=c=0" T is linear.
"T(x,y,z) = (2x - 4y + 3z, 0)" . For every "x_1,x_2,y_1,y_2,z_1,z_2\\in\\R \\; \\;" "T(x_1+x_2,y_1+y_2,z_1+z_2) = (2(x_1+x_2)-4(y_1+y_2)+3(z_1+z_2),0) = (2x_1-4y_1+3z_1,0) + (2x_2-4y_2+3z_2,0) = T(x_1,y_1,z_1) + T(x_2,y_2,z_2),"
so T is linear.
Comments
Leave a comment