Question #121752
Suppose b,c belongs to R. Define map T : R3 --> R2 by
T.(x,y,z)= (2x - 4y + 3z +b, 6xcxyz)
Show that T is linear if and only if b = c = 0.
1
Expert's answer
2020-06-15T13:11:57-0400

Let us consider T(x1+x2,y1+y2,z1+z2).T(x_1+x_2,y_1+y_2,z_1+z_2). It should be equal to T(x1,y1,z1)+T(x2,y2,z2)T(x_1,y_1,z_1) + T(x_2,y_2,z_2) .

T(x1+x2,y1+y2,z1+z2)=(2(x1+x2)4(y1+y2)+3(z1+z2)+b,6c(x1+x2)2(y1+y2)(z1+z2)).T(x_1+x_2,y_1+y_2,z_1+z_2) = \big(2(x_1+x_2)-4(y_1+y_2) + 3(z_1+z_2)+b, 6c(x_1+x_2)^2(y_1+y_2)(z_1+z_2)\big).

T(x1,y1,z1)+T(x2,y2,z2)=(2x14y1+3z1+b,6cx12y1z1)+(2x24y2+3z2+b,6cx22y2z2)=(2(x1+x2)4(y1+y2)+3(z1+z2)+2b,6c(x12y1z1+x22y2z2)).T(x_1,y_1,z_1) + T(x_2,y_2,z_2) = (2x_1-4y_1+3z_1+b,6cx_1^2y_1z_1) + (2x_2-4y_2+3z_2+b,6cx_2^2y_2z_2 ) = \big(2(x_1+x_2)-4(y_1+y_2) + 3(z_1+z_2)+2b, 6c(x_1^2y_1z_1+x_2^2y_2z_2)\big).


Therefore, 2(x1+x2)4(y1+y2)+3(z1+z2)+b=2(x1+x2)4(y1+y2)+3(z1+z2)+2b2(x_1+x_2)-4(y_1+y_2) + 3(z_1+z_2)+b = 2(x_1+x_2)-4(y_1+y_2) + 3(z_1+z_2)+2b for every x1,x2,y1,y2,z1,z2R.x_1,x_2,y_1,y_2,z_1,z_2\in\R. It is true if and only if 2b=b  b=0.2b=b \; \Rightarrow b = 0.


Also it should be true that 6c(x1+x2)2(y1+y2)(z1+z2)=6c(x12y1z1+x22y2z2)6c(x_1+x_2)^2(y_1+y_2)(z_1+z_2) = 6c(x_1^2y_1z_1+x_2^2y_2z_2) for every x1,x2,y1,y2,z1,z2R.x_1,x_2,y_1,y_2,z_1,z_2\in\R. Let, for example, x1=y1=z1=1,  x2=y1=z1=2x_1=y_1=z_1 = 1, \; x_2=y_1=z_1=2 , therefore

6c81=6c65c=0.6c\cdot81= 6c\cdot65 \Rightarrow c = 0. So cc can be only equal to 0.


So we conclude that if T is linear, b=0 and c = 0. Now we should prove that for b=c=0b=c=0 T is linear.


T(x,y,z)=(2x4y+3z,0)T(x,y,z) = (2x - 4y + 3z, 0) . For every x1,x2,y1,y2,z1,z2R    x_1,x_2,y_1,y_2,z_1,z_2\in\R \; \; T(x1+x2,y1+y2,z1+z2)=(2(x1+x2)4(y1+y2)+3(z1+z2),0)=(2x14y1+3z1,0)+(2x24y2+3z2,0)=T(x1,y1,z1)+T(x2,y2,z2),T(x_1+x_2,y_1+y_2,z_1+z_2) = (2(x_1+x_2)-4(y_1+y_2)+3(z_1+z_2),0) = (2x_1-4y_1+3z_1,0) + (2x_2-4y_2+3z_2,0) = T(x_1,y_1,z_1) + T(x_2,y_2,z_2),

so T is linear.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS