Let us consider T(x1+x2,y1+y2,z1+z2). It should be equal to T(x1,y1,z1)+T(x2,y2,z2) .
T(x1+x2,y1+y2,z1+z2)=(2(x1+x2)−4(y1+y2)+3(z1+z2)+b,6c(x1+x2)2(y1+y2)(z1+z2)).
T(x1,y1,z1)+T(x2,y2,z2)=(2x1−4y1+3z1+b,6cx12y1z1)+(2x2−4y2+3z2+b,6cx22y2z2)=(2(x1+x2)−4(y1+y2)+3(z1+z2)+2b,6c(x12y1z1+x22y2z2)).
Therefore, 2(x1+x2)−4(y1+y2)+3(z1+z2)+b=2(x1+x2)−4(y1+y2)+3(z1+z2)+2b for every x1,x2,y1,y2,z1,z2∈R. It is true if and only if 2b=b⇒b=0.
Also it should be true that 6c(x1+x2)2(y1+y2)(z1+z2)=6c(x12y1z1+x22y2z2) for every x1,x2,y1,y2,z1,z2∈R. Let, for example, x1=y1=z1=1,x2=y1=z1=2 , therefore
6c⋅81=6c⋅65⇒c=0. So c can be only equal to 0.
So we conclude that if T is linear, b=0 and c = 0. Now we should prove that for b=c=0 T is linear.
T(x,y,z)=(2x−4y+3z,0) . For every x1,x2,y1,y2,z1,z2∈R T(x1+x2,y1+y2,z1+z2)=(2(x1+x2)−4(y1+y2)+3(z1+z2),0)=(2x1−4y1+3z1,0)+(2x2−4y2+3z2,0)=T(x1,y1,z1)+T(x2,y2,z2),
so T is linear.
Comments