"T.(x,y,z)= (2x - 4y + 3z +b, 6xcxyz)"
For a mapping to be linear,
So, if "T" is linear,then
"T(\\alpha x,\\alpha y,\\alpha z)=" "(2\\alpha x - 4\\alpha y + 3\\alpha z +b, 6(\\alpha x)c(\\alpha x)(\\alpha y)(\\alpha z))=" "(2\\alpha x - 4\\alpha y + 3\\alpha z +b," "6(\\alpha^4 )cx^2yz)"
This must be equal to "(\\alpha (2x - 4y + 3z +b), \\alpha (6xcxyz))" .
So,"\\alpha (2x - 4y + 3z +b)" "=(2\\alpha x - 4\\alpha y + 3\\alpha z +b)"
"\\implies b\\alpha = b\\implies b=0"
And,"\\alpha (6xcxyz))" "=" "6(\\alpha^4 )cx^2yz)\\implies" "6\\alpha x^2yzc(1-\\alpha ^3)=0"
And "\\alpha ,x,y,z" can have any values.
So,for the above statement to be true,"c=0."
Comments
Leave a comment