Question #121520
Suppose b,c belongs to R. Define map T : R3 --> R2 by
T.(x,y,z)= (2x - 4y + 3z +b, 6xcxyz)
Show that T is linear if and only if b = c = 0.
1
Expert's answer
2020-06-11T20:35:27-0400

T.(x,y,z)=(2x4y+3z+b,6xcxyz)T.(x,y,z)= (2x - 4y + 3z +b, 6xcxyz)

For a mapping to be linear,

  1. T(αx,αy,αz)=α(T(x,y,z))T(\alpha x,\alpha y,\alpha z)=\alpha (T(x,y,z))  α R\forall\ \alpha \in \ R
  2. T(x1+x2,y1+y2,z1+z2)=T(x1,y1,z1)+T(x2,y2,z2)T(x_1+x_2,y_1+y_2,z_1+z_2)=T(x_1,y_1,z_1)+T(x_2,y_2,z_2)  α R\forall\ \alpha \in \ R

So, if TT is linear,then

T(αx,αy,αz)=T(\alpha x,\alpha y,\alpha z)= (2αx4αy+3αz+b,6(αx)c(αx)(αy)(αz))=(2\alpha x - 4\alpha y + 3\alpha z +b, 6(\alpha x)c(\alpha x)(\alpha y)(\alpha z))= (2αx4αy+3αz+b,(2\alpha x - 4\alpha y + 3\alpha z +b, 6(α4)cx2yz)6(\alpha^4 )cx^2yz)

This must be equal to (α(2x4y+3z+b),α(6xcxyz))(\alpha (2x - 4y + 3z +b), \alpha (6xcxyz)) .

So,α(2x4y+3z+b)\alpha (2x - 4y + 3z +b) =(2αx4αy+3αz+b)=(2\alpha x - 4\alpha y + 3\alpha z +b)

    bα=b    b=0\implies b\alpha = b\implies b=0

And,α(6xcxyz))\alpha (6xcxyz)) == 6(α4)cx2yz)    6(\alpha^4 )cx^2yz)\implies 6αx2yzc(1α3)=06\alpha x^2yzc(1-\alpha ^3)=0

And α,x,y,z\alpha ,x,y,z can have any values.

So,for the above statement to be true,c=0.c=0.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS