T.(x,y,z)=(2x−4y+3z+b,6xcxyz)
For a mapping to be linear,
- T(αx,αy,αz)=α(T(x,y,z)) ∀ α∈ R
- T(x1+x2,y1+y2,z1+z2)=T(x1,y1,z1)+T(x2,y2,z2) ∀ α∈ R
So, if T is linear,then
T(αx,αy,αz)= (2αx−4αy+3αz+b,6(αx)c(αx)(αy)(αz))= (2αx−4αy+3αz+b, 6(α4)cx2yz)
This must be equal to (α(2x−4y+3z+b),α(6xcxyz)) .
So,α(2x−4y+3z+b) =(2αx−4αy+3αz+b)
⟹bα=b⟹b=0
And,α(6xcxyz)) = 6(α4)cx2yz)⟹ 6αx2yzc(1−α3)=0
And α,x,y,z can have any values.
So,for the above statement to be true,c=0.
Comments