Question #123418
On a farmer’s market in Essex, the demand and supply functions for (a kilogram (kg) of) oranges (1), (a kg of) lemon (2) and (a kg of) nectarines (3) are:
q_1^d=-2p_1-4p_2+2p_3+160,q_1^s=2p_1+80
q_2^d=-4p_1-2p_2+5p_3+200,q_2^s=3p_2+160
q_3^d=2p_1+4p_2-5p_3+300,q_3^s=p_3+90
Use the equilibrium condition q_i^d=q_i^s to rewrite this system in the form Ap=d, where A is a 3×3 matrix of coefficients, p=(■(p_1@p_2@p_3 )), and d is a 3×1 vector. Then, use Cramer’s rule to solve for p_1 and p_3 (ONLY solve for p_1 and p_3!)
1
Expert's answer
2020-06-23T19:51:58-0400
2p14p2+2p3+160=2p1+80-2p_1-4p_2+2p_3+160=2p_1+804p12p2+5p3+200=3p2+160-4p_1-2p_2+5p_3+200=3p_2+1602p1+4p25p3+300=p3+902p_1+4p_2-5p_3+300=p_3+90


4p14p2+2p3=80-4p_1-4p_2+2p_3=-804p15p2+5p3=40-4p_1-5p_2+5p_3=-402p1+4p26p3=2102p_1+4p_2-6p_3=-210

A=(442455246)A=\begin{pmatrix} -4 & -4 & 2 \\ -4 & -5 & 5 \\ 2 & 4 & -6 \end{pmatrix}

p=(p1p2p3),d=(8040210)p=\begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix}, d=\begin{pmatrix} -80 \\ -40 \\ -210 \end{pmatrix}

Ap=dAp=d

Δ=442455246=\Delta=\begin{vmatrix} -4 & -4 & 2 \\ -4 & -5 & 5 \\ 2 & 4 & -6 \end{vmatrix}=

=45546(4)4526+24524==-4\begin{vmatrix} -5 & 5 \\ 4 & -6 \end{vmatrix}-(-4)\begin{vmatrix} -4 & 5 \\ 2 & -6 \end{vmatrix}+2\begin{vmatrix} -4 & -5 \\ 2 & 4 \end{vmatrix}=

=4(3020)+4(2410)+2(16+10)=40=-4(30-20)+4(24-10)+2(-16+10)=4\not=0

Solutions exist.


Δ1=8042405521046=\Delta_1=\begin{vmatrix} -80 & -4 & 2 \\ -40 & -5 & 5 \\ -210 & 4 & -6 \end{vmatrix}=

=805546(4)4052106+24052104==-80\begin{vmatrix} -5 & 5 \\ 4 & -6 \end{vmatrix}-(-4)\begin{vmatrix} -40 & 5 \\ -210 & -6 \end{vmatrix}+2\begin{vmatrix} -40 & -5 \\ -210 & 4 \end{vmatrix}=

=80(3020)+4(240+1050)+2(1601050)=1940=-80(30-20)+4(240+1050)+2(-160-1050)=1940


Δ3=4480454024210=\Delta_3=\begin{vmatrix} -4 & -4 & -80 \\ -4 & -5 & -40 \\ 2 & 4 & -210 \end{vmatrix}=

=45404210(4)4402210804524==-4\begin{vmatrix} -5 & -40 \\ 4 & -210 \end{vmatrix}-(-4)\begin{vmatrix} -4 & -40 \\ 2 & -210 \end{vmatrix}-80\begin{vmatrix} -4 & -5 \\ 2 & 4 \end{vmatrix}=

=4(1050+160)+4(840+80)80(16+10)=680=-4(1050+160)+4(840+80)-80(-16+10)=-680


p1=19404=485p_1={1940\over 4}=485

p3=6804=170p_3={-680\over 4}=-170


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS