Answer to Question #123418 in Linear Algebra for zwonaka Dzivhani
2020-06-22T14:00:22-04:00
On a farmer’s market in Essex, the demand and supply functions for (a kilogram (kg) of) oranges (1), (a kg of) lemon (2) and (a kg of) nectarines (3) are:
q_1^d=-2p_1-4p_2+2p_3+160,q_1^s=2p_1+80
q_2^d=-4p_1-2p_2+5p_3+200,q_2^s=3p_2+160
q_3^d=2p_1+4p_2-5p_3+300,q_3^s=p_3+90
Use the equilibrium condition q_i^d=q_i^s to rewrite this system in the form Ap=d, where A is a 3×3 matrix of coefficients, p=(■(p_1@p_2@p_3 )), and d is a 3×1 vector. Then, use Cramer’s rule to solve for p_1 and p_3 (ONLY solve for p_1 and p_3!)
1
2020-06-23T19:51:58-0400
"-2p_1-4p_2+2p_3+160=2p_1+80" "-4p_1-2p_2+5p_3+200=3p_2+160" "2p_1+4p_2-5p_3+300=p_3+90"
"-4p_1-4p_2+2p_3=-80" "-4p_1-5p_2+5p_3=-40" "2p_1+4p_2-6p_3=-210"
"A=\\begin{pmatrix}\n -4 & -4 & 2 \\\\\n -4 & -5 & 5 \\\\\n 2 & 4 & -6\n\\end{pmatrix}"
"p=\\begin{pmatrix}\n p_1 \\\\\n p_2 \\\\\np_3\n\\end{pmatrix}, d=\\begin{pmatrix}\n -80 \\\\\n -40 \\\\\n-210\n\\end{pmatrix}"
"Ap=d"
"\\Delta=\\begin{vmatrix}\n -4 & -4 & 2 \\\\\n -4 & -5 & 5 \\\\\n 2 & 4 & -6\n\\end{vmatrix}="
"=-4\\begin{vmatrix}\n -5 & 5 \\\\\n 4 & -6\n\\end{vmatrix}-(-4)\\begin{vmatrix}\n -4 & 5 \\\\\n 2 & -6\n\\end{vmatrix}+2\\begin{vmatrix}\n -4 & -5 \\\\\n 2 & 4\n\\end{vmatrix}="
"=-4(30-20)+4(24-10)+2(-16+10)=4\\not=0" Solutions exist.
"\\Delta_1=\\begin{vmatrix}\n -80 & -4 & 2 \\\\\n -40 & -5 & 5 \\\\\n -210 & 4 & -6\n\\end{vmatrix}="
"=-80\\begin{vmatrix}\n -5 & 5 \\\\\n 4 & -6\n\\end{vmatrix}-(-4)\\begin{vmatrix}\n -40 & 5 \\\\\n -210 & -6\n\\end{vmatrix}+2\\begin{vmatrix}\n -40 & -5 \\\\\n -210 & 4\n\\end{vmatrix}="
"=-80(30-20)+4(240+1050)+2(-160-1050)=1940"
"\\Delta_3=\\begin{vmatrix}\n -4 & -4 & -80 \\\\\n -4 & -5 & -40 \\\\\n 2 & 4 & -210\n\\end{vmatrix}="
"=-4\\begin{vmatrix}\n -5 & -40 \\\\\n 4 & -210\n\\end{vmatrix}-(-4)\\begin{vmatrix}\n -4 & -40 \\\\\n 2 & -210\n\\end{vmatrix}-80\\begin{vmatrix}\n -4 & -5 \\\\\n 2 & 4\n\\end{vmatrix}="
"=-4(1050+160)+4(840+80)-80(-16+10)=-680"
"p_1={1940\\over 4}=485"
"p_3={-680\\over 4}=-170"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments
Leave a comment